Efficient large electromagnetic simulation based on hybrid TLM and modal approach on grid computing and supercomputer - TEL - Thèses en ligne
Thèse Année : 2012

Efficient large electromagnetic simulation based on hybrid TLM and modal approach on grid computing and supercomputer

Parallélisation, déploiement et adaptation automatique de la simulation électromagnétique sur une grille de calcul

Résumé

In the context of Information Communications Technology (ICT), the major challenge is to create systems increasingly small, boarding more and more intelligence, hardware and software, including complex communicating architectures. This requires robust design methodologies to reduce the development cycle and prototyping phase. Thus, the design and optimization of physical layer communication is paramount. The complexity of these systems makes them difficult to optimize, because of the explosion in the number of unknown parameters. The methods and tools developed in past years will be eventually inadequate to address problems that lie ahead. Communicating objects will be very often integrated into cluttered environments with all kinds of metal structures and dielectric larger or smaller sizes compared to the wavelength. The designer must anticipate the presence of such barriers in the propagation channel to establish properly link budgets and an optimal design of the communicating object. For example, the wave propagation in an airplane cabin from sensors or even an antenna, towards the cockpit is greatly affected by the presence of the metal structure of the seats inside the cabin or even the passengers. So, we must absolutely take into account this perturbation to predict correctly the power balance between the antenna and a possible receiver. More generally, this topic will address the theoretical and computational electromagnetics in order to propose an implementation of informatics tools for the rigorous calculation of electromagnetic scattering inside very large structures or radiation antenna placed near oversized objects. This calculation involves the numerical solution of very large systems inaccessible by traditional resources. The solution will be based on grid computing and supercomputers. Electromagnetic modeling of oversized structures by means of different numerical methods, using new resources (hardware and software) to realize yet more performant calculations, is the aim of this work. The numerical modeling is based on a hybrid approach which combines Transmission-Line Matrix (TLM) and the mode matching methods. The former is applied to homogeneous volumes while the latter is used to describe complex planar structures. In order to accelerate the simulation, a parallel implementation of the TLM algorithm in the context of distributed computing paradigm is proposed. The subdomain of the structure which is discretized upon TLM is divided into several parts called tasks, each one being computed in parallel by different processors. To achieve this, the tasks communicate between them during the simulation by a message passing library. An extension of the modal approach to various modes has been developped by increasing the complexity of the planar structures. The results prove the benefits of the combined grid computing and hybrid approach to solve electrically large structures, by matching the size of the problem with the number of computing resources used. The study highlights the role of parallelization scheme, cluster versus grid, with respect to the size of the problem and its repartition. Moreover, a prediction model for the computing performances on grid, based on a hybrid approach that combines a historic-based prediction and an application profile-based prediction, has been developped. The predicted values are in good agreement with the measured values. The analysis of the simulation performances has allowed to extract practical rules for the estimation of the required resources for a given problem. Using all these tools, the propagation of the electromagnetic field inside a complex oversized structure such an airplane cabin, has been performed on grid and also on a supercomputer. The advantages and disadvantages of the two environments are discussed.
Dans le contexte des Sciences de l’Information et de la Technologie, un des challenges est de créer des systèmes de plus en plus petits embarquant de plus en plus d’intelligence au niveau matériel et logiciel avec des architectures communicantes de plus en plus complexes. Ceci nécessite des méthodologies robustes de conception afin de réduire le cycle de développement et la phase de prototypage. Ainsi, la conception et l’optimisation de la couche physique de communication est primordiale. La complexité de ces systèmes rend difficile leur optimisation notamment à cause de l’explosion du nombre des paramètres inconnus. Les méthodes et outils développés ces dernières années seront à terme inadéquats pour traiter les problèmes qui nous attendent. Par exemple, la propagation des ondes dans une cabine d’avion à partir des capteurs ou même d’une antenne, vers le poste de pilotage est grandement affectée par la présence de la structure métallique des sièges à l’intérieur de la cabine, voir les passagers. Il faut, donc, absolument prendre en compte cette perturbation pour prédire correctement le bilan de puissance entre l’antenne et un possible récepteur. Ces travaux de recherche portent sur les aspects théoriques et de mise en oeuvre pratique afin de proposer des outils informatiques pour le calcul rigoureux de la réflexion des champs électromagnétiques à l’intérieur de très grandes structures . Ce calcul implique la solution numérique de très grands systèmes inaccessibles par des ressources traditionnelles. La solution sera basée sur une grille de calcul et un supercalculateur. La modélisation électromagnétique des structures surdimensionnées par plusieurs méthodes numériques utilisant des nouvelles ressources informatiques, hardware et software, pour dérouler des calculs performants, représente le but de ce travail. La modélisation numérique est basée sur une approche hybride qui combine la méthode Transmission-Line Matrix (TLM) et l’approche modale. La TLM est appliquée aux volumes homogènes, tandis que l’approche modale est utilisée pour décrire les structures planaires complexes. Afin d’accélérer la simulation, une implémentation parallèle de l’algorithme TLM dans le contexte du paradigme de calcul distribué est proposé. Le sous-domaine de la structure qui est discrétisé avec la TLM est divisé en plusieurs parties appelées tâches, chacune étant calculée en parallèle par des processeurs différents. Pour accomplir le travail, les tâches communiquent entre elles au cours de la simulation par une librairie d’échange de messages. Une extension de l’approche modale avec plusieurs modes différents a été développée par l’augmentation de la complexité des structures planaires. Les résultats démontrent les avantages de la grille de calcul combinée avec l’approche hybride pour résoudre des grandes structures électriques, en faisant correspondre la taille du problème avec le nombre de ressources de calcul utilisées. L’étude met en évidence le rôle du schéma de parallélisation, cluster versus grille, par rapport à la taille du problème et à sa répartition. En outre, un modèle de prédiction a été développé pour déterminer les performances du calcul sur la grille, basé sur une approche hybride qui combine une prédiction issue d’un historique d’expériences avec une prédiction dérivée du profil de l’application. Les valeurs prédites sont en bon accord avec les valeurs mesurées. L’analyse des performances de simulation a permis d’extraire des règles pratiques pour l’estimation des ressources nécessaires pour un problème donné. En utilisant tous ces outils, la propagation du champ électromagnétique à l’intérieur d’une structure surdimensionnée complexe, telle qu’une cabine d’avion, a été effectuée sur la grille et également sur le supercalculateur. Les avantages et les inconvénients des deux environnements sont discutés.
Fichier principal
Vignette du fichier
alexandru.pdf (6.76 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-00797061 , version 1 (05-03-2013)
tel-00797061 , version 2 (10-11-2023)

Identifiants

  • HAL Id : tel-00797061 , version 2

Citer

Mihai Alexandru. Efficient large electromagnetic simulation based on hybrid TLM and modal approach on grid computing and supercomputer. Micro and nanotechnologies/Microelectronics. Institut National Polytechnique de Toulouse - INPT, 2012. English. ⟨NNT : 2012INPT0144⟩. ⟨tel-00797061v2⟩
281 Consultations
654 Téléchargements

Partager

More