Certification of static analysis in many-sorted first-order logic
Analyse statique certifiée en logique du premier ordre multi-sortée
Résumé
Static program analysis is a core technology for both verifying and finding errors in programs but most static analyzers are complex pieces of software that are not without error. A Static analysis formalised as an abstract interpreter can be proved sound, however such proofs are significantly harder to do on the actual implementation of an analyser. To alleviate this problem we propose to generate Verification Conditions (VCs, formulae valid only if the results of the analyser are correct) and to discharge them using an Automated Theorem Prover (ATP). We generate formulae in Many-Sorted First-Order Logic (MSFOL), a logic that has been successfully used in deductive program verification. MSFOL is expressive enough to describe the results of complex analyses and to formalise the operational semantics of object-oriented languages. Using the same logic for both tasks allows us to prove the soundness of the VC generator using deductive verification tools. To ensure that VCs can be automatically discharged for complex analyses of the heap, we introduce a VC calculus that produces formulae belonging to a decidable fragment of MSFOL. Furthermore, to be able to certify different analyses with the same calculus, we describe a family of analyses with a parametric concretisation function and instrumentation of the semantics. To improve the reliability of ATPs, we also studied the result certification of Satisfiability Modulo Theory solvers, a family of ATPs dedicated to MSFOL. We propose a modular proof-system and a modular proof-verifier programmed and proved correct in Coq, that rely on exchangeable verifiers for each of the underlying theories.
L'analyse statique est utilisée pour vérifier de manière formelle qu'un programme ne fait pas d'erreurs, mais un analyseur statique est lui même un programme complexe sujet aux erreurs. Une analyse statique formalisée comme un interpreteur abstrait peut être prouvée correcte, cependant un telle preuve ne porte pas directement sur l'implementation de l'analyseur. Pour résoudre cette difficultée, nous proposons de générer des conditions de vérification (VCs, des formules logiques valides seulement si le résultat de l'analyseur est correct), et de les décharger à l'aide d'un prouveur de théorèmes automatique (ATP). Les VCs générées appartiennent à la logic du premier ordre multi-sortée (MSFOL), une logique utilisée avec succés en vérification déductive, suffisament expressive pour encoder les résultats d'analyses complexes et pour formaliser la sémantique operationnelle d'un langage objet, ce qui nous permet de prouver la correction des VCs générées à l'aide d'outils de vérification deductive. Pour assurer que les VCs puissent être déchargée automatiquement pour des analyses du tas, nous introduisons un calcul de VCs appartenant à un fragment décidable de MSFOL, et afin de pouvoir utiliser le même calcul pour différentes analyses, nous décrivons une famille d'analyses à l'aide d'une fonction de concretisation et d'un instrumentation de la sémantique paramétrées. Pour améliorer la fiabilité des ATPs, nous étudions aussi la certification de résultat des proveurs de satisfiabilité modulo théories, une famille d'ATPs dédiée à MSFOL. Nous proposons un système de preuve et un vérifieur modulaires, qui s'appuient sur des vérifieur dédiés aux théories sous-jacentes.
Origine | Version validée par le jury (STAR) |
---|
Loading...