Simulation numérique du reformage autothermique du méthane - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2013

Numerical simulation of methane autothermal reforming

Simulation numérique du reformage autothermique du méthane

Résumé

Syngas is a gaseous mixture mainly composed of CO and H2, which constitutes a major feedstock in petrochemical industry. Several industrial approaches are commonly used to produce it. Non catalytic Partial Oxidation (POX) and Steam Methane Reforming (SMR) are two of them. Autothermal Reforming (ATR) is a third process that combines both POX and SMR in the same reactor. A better knowledge of the reactive flow properties inside the chamber is required in order to improve the ATR process efficiency. Numerical simulation appears as an efficient tool to reach this goal. Because of the high CPU cost required for these simulations, RANS (Reynolds Average Numerical Simulation) formulation is usually preferred for the simulation of the whole chamber. This approach relies on the use of models, like the turbulent combustion model that aims at describing the interactions between turbulence and chemical reactions. Several approaches have been proposed to compute it, which benefit from a relatively wide experience for the simulation of classical combustion systems. However, ATR flames have some specific properties that make them quite different from these classical configurations, especially because of high pressure, reactants dilution with water and high global equivalence ratio. The validity of classical turbulent combustion models therefore requires to be assessed in ATR configurations. The objective of this thesis is to meet this need by testing the validity of several turbulent combustion models. The first part of this work has been to analyze water-enriched CH4/O2 flames properties at high pressure. In particular, a strategy for evaluating characteristic chemical time scales of a reactive system has been proposed within this context. In a second part, a DNS numerical experiment has been performed. Its results are then used as a benchmark for a priori testing several turbulent combustion models in the context of ATR reactor RANS simulations.
Le syngas est un mélange gazeux de CO et H2 qui constitue un intermédiaire important dans l’industrie pétrochimique. Plusieurs approches sont utilisées pour le produire. L’oxydation partielle non catalytique (POX) et le reformage à la vapeur (SMR) en font partie. Le reformage auto thermique du méthane (ATR) combine quant à lui ces deux procédés au sein d’un même réacteur. L’amélioration du rendement global du procédé ATR requiert une meilleure caractérisation du comportement des gaz au sein de la chambre. La simulation numérique apparaît comme un outil efficace pour y parvenir. Pour réduire le coût CPU, c'est généralement l'approche RANS (Reynolds Average Numerical Simulation) qui est privilégiée pour la simulation complète de la chambre. Cette approche repose sur l'utilisation de modèles, parmi lesquels le modèle de combustion turbulente, qui a pour objectif de représenter les interactions entre la turbulence et la réaction chimique au sein du mélange. Plusieurs stratégies ont été proposées pour le calculer, qui bénéficient globalement d'une large expérience pour les systèmes classiques mettant en jeu la combustion. Cependant, les flammes observées dans les réacteurs ATR présentent des propriétés assez différentes de ces configurations classiques. La validité des modèles de combustion turbulente classiques doit donc y être vérifiée. L'objectif de cette thèse est de répondre à ce besoin, en testant la validité de différents modèles de combustion turbulente. La première partie du travail a consisté à analyser les propriétés des flammes CH4/O2 enrichies en vapeur d'eau à haute pression, et a notamment permis le développement d’une méthode d’évaluation des temps caractéristiques d’un système chimique. Dans un deuxième temps, une expérience numérique à l’aide d’un code DNS a été réalisée, afin de servir de référence pour tester a priori sur des configurations ATR plusieurs modèles RANS de combustion turbulente couramment utilisés dans le milieu industriel.
Fichier principal
Vignette du fichier
these_def1.pdf (16.45 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-00862538 , version 1 (17-09-2013)

Identifiants

  • HAL Id : tel-00862538 , version 1

Citer

Jean Caudal. Simulation numérique du reformage autothermique du méthane. Autre. Ecole Centrale Paris, 2013. Français. ⟨NNT : 2013ECAP0020⟩. ⟨tel-00862538⟩
648 Consultations
2267 Téléchargements

Partager

Gmail Facebook X LinkedIn More