Model order reduction methods for parameter-dependent equations -- Applications in Uncertainty Quantification. - Archive ouverte HAL Access content directly
Theses Year : 2015

Model order reduction methods for parameter-dependent equations -- Applications in Uncertainty Quantification.

Méthodes de réduction de modèle pour les équations paramétrées -- Applications à la quantification d’incertitude.

(1, 2)
1
2

Abstract

Model order reduction has become an inescapable tool for the solution of high dimensional parameter-dependent equations arising in uncertainty quantification, optimization or inverse problems. In this thesis we focus on low rank approximation methods, in particular on reduced basis methods and on tensor approximation methods. The approximation obtained by Galerkin projections may be inaccurate when the operator is ill-conditioned. For projection based methods, we propose preconditioners built by interpolation of the operator inverse. We rely on randomized linear algebra for the efficient computation of these preconditioners. Adaptive interpolation strategies are proposed in order to improve either the error estimates or the projection onto reduced spaces. For tensor approximation methods, we propose a minimal residual formulation with ideal residual norms. The proposed algorithm, which can be interpreted as a gradient algorithm with an implicit preconditioner, allows obtaining a quasi-optimal approximation of the solution. Finally, we address the problem of the approximation of vector-valued or functional-valued quantities of interest. For this purpose we generalize the 'primal-dual' approaches to the non-scalar case, and we propose new methods for the projection onto reduced spaces. In the context of tensor approximation we consider a norm which depends on the error on the quantity of interest. This allows obtaining approximations of the solution that take into account the objective of the numerical simulation.
Les méthodes de réduction de modèle sont incontournables pour la résolution d'équations paramétrées de grande dimension qui apparaissent dans les problèmes de quantification d'incertitude, d'optimisation ou encore les problèmes inverses. Dans cette thèse nous nous intéressons aux méthodes d'approximation de faible rang, notamment aux méthodes de bases réduites et d'approximation de tenseur. L'approximation obtenue par projection de Galerkin peut être de mauvaise qualité lorsque l'opérateur est mal conditionné. Pour les méthodes de projection sur des espaces réduits, nous proposons des préconditionneurs construits par interpolation d'inverse d'opérateur, calculés efficacement par des outils d'algèbre linéaire "randomisée". Des stratégies d'interpolation adaptatives sont proposées pour améliorer soit les estimateurs d'erreur, soit les projections sur les espaces réduits. Pour les méthodes d'approximation de tenseur, nous proposons une formulation en minimum de résidu avec utilisation de norme idéale. L'algorithme de résolution, qui s'interprète comme un algorithme de gradient avec préconditionneur implicite, permet d'obtenir une approximation quasi-optimale de la solution. Enfin nous nous intéressons à l'approximation de quantités d'intérêt à valeur fonctionnelle ou vectorielle. Nous généralisons pour cela les approches de type "primale-duale" au cas non scalaire, et nous proposons de nouvelles méthodes de projection sur espaces réduits. Dans le cadre de l'approximation de tenseur, nous considérons une norme dépendant de l'erreur en quantité d'intérêt afin d'obtenir une approximation de la solution qui tient compte de l'objectif du calcul.
Fichier principal
Vignette du fichier
Zahm_thesis.pdf (10.36 Mo) Télécharger le fichier
Loading...

Dates and versions

tel-01256411 , version 1 (14-01-2016)

Identifiers

  • HAL Id : tel-01256411 , version 1

Cite

Olivier Zahm. Model order reduction methods for parameter-dependent equations -- Applications in Uncertainty Quantification.. Mathematics [math]. Ecole Centrale de Nantes (ECN), 2015. English. ⟨NNT : ⟩. ⟨tel-01256411⟩
1112 View
712 Download

Share

Gmail Facebook Twitter LinkedIn More