Atom chips for metrology - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2015

Atom chips for metrology

Atom chips pour la métrologie

Résumé

This thesis covers two main subjects: the evaluation of the stability of a Trapped Atom Clock on a Chip (TACC) and the expansion of this technology towards creating an atom interferometer on the same chip. The combination of a clock and an interferometer on the same chip constitutes the basis for the realization of atom-based integrated inertial navigation units. Previous work installed the clock operation and discovered, among others, very long coherence times, which allow Ramsey interrogations of up to 5 s, a prerequisite for high stability operation. I present the first thorough evaluation of the clock stability. Together with my predecessor we have demonstrated relative frequency fluctuations of 5.8 10-13 at 1 s integrating down to 6 10-15 at 30,000 s. The second part of this thesis aims to expand the versatility of our atom chip to create an atom interferometer. I have studied various interferometer schemes using microwave dressed potentials and implemented these to the set-up. The first scheme, following work by P. Treutlein et al., involves displacing one of the clock states vertically during a Ramsey clock sequence thereby allowing the measurement of potential gradients by exploiting the differential frequency shift accumulated between the two states. Ramsey fringes where recorded for different durations of the splitting, resulting in a clear signal of the wavepacket separation. The second scheme uses microwave dressing to generate a double well potential in one of the clock states and a single well in the other. Starting in the single well, a π-pulse on the clock transition constitutes the beam splitter and leads to a spatial separation for the same internal state.
Cette thèse porte sur deux sujets principaux: l'évaluation de la stabilité d'une horloge sur microcircuit utilisant des atomes piégés (Trapped Atom Clock on a Chip - TACC) et l'extension de cette technologie vers la réalisation d'un interféromètre atomique sur la même puce. Cette combinaison constitue la base pour la réalisation de capteurs inertiels intégrés pour la navigation. Des travaux antérieurs ont installé l'horloge et ont découvert, entre autres, des temps de cohérence très longs, qui permettent une interrogation Ramsey jusqu'à 5 s, une condition préalable pour le fonctionnement à grande stabilité. Je présente ici la première évaluation approfondie de la stabilité de l'horloge. Avec mon prédécesseur, nous avons démontré les fluctuations de fréquences relatives de 5.8 10-13 à 1 s intégrant jusqu'à 6 10-15 à 30000 s.La deuxième partie de cette thèse vise à étendre la polyvalence de notre puce atomique pour créer un interféromètre. J'ai étudié divers régimes d'interféromètres en utilisant des potentiels habillés par microondes. Le premier régime consiste à déplacer l'un des états d'horloge verticalement pendant une séquence d'horloge Ramsey. Ceci permet la mesure de gradients de potentiel en exploitant la différence de fréquences entre les deux états. Le second régime utilise des champs microondes pour générer un potentiel de double puits dans l'un des états d'horloge et un seul puits dans l'autre.À partir du seul puits, un pulse-π sur la transition d'horloge constitue la séparatrice de l'interféromètre et conduit une séparation spatiale tout en préservant le même état interne pour les deux bras de l'interféromètre.
Fichier principal
Vignette du fichier
2015PA066089.pdf (3.32 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01260339 , version 1 (22-01-2016)

Identifiants

  • HAL Id : tel-01260339 , version 1

Citer

Ramon Szmuk. Atom chips for metrology. Quantum Physics [quant-ph]. Université Pierre et Marie Curie - Paris VI, 2015. English. ⟨NNT : 2015PA066089⟩. ⟨tel-01260339⟩
252 Consultations
494 Téléchargements

Partager

Gmail Facebook X LinkedIn More