Low power architecture for fall detection system - TEL - Thèses en ligne
Thèse Année : 2015

Low power architecture for fall detection system

Conception faible consommation d'un système de détection de chute

Résumé

Nowadays, fall detection is a major challenge in the public health care domain, especially for the elderly living alone and rehabilitants in hospitals. This thesis presents an exploration for a Fall Detection System based on camera under an algorithmic and architectural point of view. Our system includes four modules: Object Segmentation, Filter, Feature Extraction and Recognition and give an urgent alarm for detecting different kinds of fall. Firstly, different algorithms for the Fall Detection System are proposed and compared the efficiency among Background Subtraction-Neural Network, Background Subtraction-Template Matching (BGS/TM), Background Subtraction-Hidden Markov Model, and Gaussian Mixture Model. Therefore, the selected BGS/TM with 91.67% (Recall), 100% (Precision) and 95.65% (Accuracy) will be implemented on ZYNQ platform. Moreover, a DUT-HBU database which is classified with different actions: fall, non-fall in three camera directions is used to evaluate the efficiency of this system. Secondly, the aim is to explore low cost architectures for this system, new power consumption and execution time models for processor core and FPGA are defined according to the different configurations of architecture and applications. The error rates of the proposed models don’t exceed 3.5%. The models are then extended to hardware/software architectures to explore low cost architecture by defining a suitable Design Space Exploration methodology. Two techniques for parallelization which are based on intra-task and inter-task static scheduling are applied with the aim to enhance the accuracy and the power consumption of this system reaches 98.3% with energy per frame of 29.5mJ/f.
De nos jours, la détection de chute est un défi pour la santé, notamment pour la surveillance des personnes âgées. Le but de cette thèse est de concevoir un système de détection de chute basée sur une surveillance par caméra et d’étudier les aspects algorithmiques et architecturaux. Notre système se compose de quatre modules : la segmentation d’objet, le filtrage, l’extraction de caractéristiques et la reconnaissance qui permettent en plus de la détection de chute d’identifier leur type afin de définir un niveau d’alerte. En premier lieu, différents algorithmes ont été étudiés et comparés comme le Background Subtraction-Neural Network; le Background Subtraction-Template Matching (BGS-TM); le Background Subtraction-Hidden Markov Model ; et le Gaussian Mixture Model. Le BGS/TM présentant le meilleur taux de reconnaissance a alors été retenu. Une nouvelle base de donnée DTU-HBU a été construite et classifiée selon différentes actions : chute, non-chute (assis, couché, rampant, etc.) selon trois angles de caméra (face, côtés et de biais). Le second objectif fut de définir une méthode de conception permettant de sélectionner les architectures présentant la meilleure performance. Un premier travail fut de définir des modèles de la consommation et du temps d’exécution pour différentes cibles (processeur, FPGA). A titre d’exemple, la plateforme ZYNQ a été considérée. Les modèles proposés présentent un taux erreur inférieur à 3,5%. Une méthodologie de conception DSE basée sur deux techniques de parallélisme (Intra-task et inter-task) et couplant le taux de reconnaissance (ACC) a été définie. Les résultats obtenus montrent que l’ACC atteint 98,3% pour une énergie de 29,5 mJ/f.
Fichier principal
Vignette du fichier
2015NICE4093.pdf (4.72 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01288526 , version 1 (15-03-2016)

Identifiants

  • HAL Id : tel-01288526 , version 1

Citer

Thi Khanh Hong Nguyen. Low power architecture for fall detection system. Other. Université Nice Sophia Antipolis, 2015. English. ⟨NNT : 2015NICE4093⟩. ⟨tel-01288526⟩
417 Consultations
1481 Téléchargements

Partager

More