Plasma charging in FDSOI ultra-thin body from 28nm technologies and below
Effets d’antenne sur transistors FDSOI à film ultra mince issus de technologies 28nm et en deçà
Résumé
Since its beginning, the microelectronic industry is aiming to increase the circuits performance and density, following Moore’s law. Hence, since the commercialization of the first circuit in 1971, the industry focuses on the transistor dimensions reduction, which improve the device performances. But, starting from the 28nm technological node, the electrostatic has become very difficult to control, and new device structure, such as the FDSOI, is proposed by STMicroelectronics to resolve this issue. The antenna effects, which occur during plasma processes, induce gate oxide damages, which can lead to the loss of those new technology benefits. In this context, the analysis of this phenomenon on the electrical behavior of FDSOI devices is key. This is the main objective of this work. First, an experimental protocol is defined, based on plasma processes characterization technique (antenna structures), and gate oxide damage characterization. Then, a charging flow mode specific to this new technology is proposed. The mechanisms linked to the antenna damages are also investigated. The first mechanism is linked to the plasma local nonuniformity between the device nodes, which induces a stress mode similar to hot carrier injection. The second mechanism is related to the antenna topography, which generates electron shading effect, thus promoting an electrical imbalance between the device nodes. Finally, a model based on the simulator circuit ELDO ®, which allows reproducing the behavior of this phenomenon on the FDSOI technology is proposed. This model takes into account the antenna structure characteristics and the plasma parameters. Based on the model simulations, various solutions to reduce the antenna voltages are proposed. Prevention rules during the circuit design were also proposed and implemented.
Depuis ses débuts, l’industrie de la microélectronique s’est fixé comme objectif d’augmenter les performances et la densité des circuits, en suivant la loi de Moore. Ainsi, depuis la commercialisation du premier circuit en 1971, les industriels se sont atteler à miniaturiser les transistors, ce qui améliore automatiquement leurs performances. Cela dit, à partir du nœud 28nm, l’électrostatique est devenue très difficile à contrôler, et de nouvelles architectures de transistor, tel que le FDSOI est proposée par STMicroelectronics pour remédier à cette problématique. Les dégradations par effets d’antenne, qui apparaissent lors des procédés plasma, provoque la dégradation de l’oxyde de grille des composants, et peuvent ainsi induire la perte des avantages offerts par cette nouvelle technologie. Dans ce contexte, l’évaluation de l’impact de ce phénomène sur le comportement électrique des transistors en technologie FDSOI est clé. Cela représente l’objectif principal de cette thèse. Tout d’abord, un protocole expérimental a été défini, basé sur des techniques de caractérisation des procédés plasma (structures d’antenne), et sur la caractérisation de la dégradation de l’oxyde de grille. Ensuite, un nouveau mode d’écoulement des charges durant les étapes plasma, spécifique à cette nouvelle technologie est proposé. Le comportement des principaux mécanismes de dégradation par effet d’antenne est aussi investigué. Le premier, est lié à la nonuniformité locale du plasma entre les nœuds du transistor, qui induit des dégradations de type porteurs chauds. Le second, est lié à la topographie des antennes, qui cause des effets d’ombrage électronique, et donc des déséquilibre en courant entre les nœuds du transistor. Enfin, un modèle basé sur un simulateur de circuit ELDO ®, et qui permet de reproduire le comportement de ce phénomène dans la technologie FDSOI est proposé. Ce dernier tient compte des caractéristiques des structures d’antenne ainsi que des paramètres plasma. Diverses solutions sont par la suite proposées pour réduire les tensions d’antenne, basées notamment sur des simulations modèles pour optimiser les paramètres des procédés plasma. Des solutions de prévention dès la conception des circuits sont aussi proposées.
Origine | Version validée par le jury (STAR) |
---|