Microscopic modelling of compact stars and planets
Modélisation microscopique des étoiles compactes
Résumé
A correct knowledge of dense stars and planets need an accurate determination of the thermodynamic behavior of matter in these objects. One of the most efficient approaches nowadays is to perform ab initio simulations, using both the statistical physics formalism and the density functionnal theory. This approach has shown its capabilities by reproducing many experimental data.In the first part of this thesis project, these methods are used to study planetary``ices'', found in planets such as Uranus or Neptun. We first confirmed the existing literature on water (equations of state and existence of a superionic phase); we then extended these results to denser planets, such as the so-called ``super-Jupiter''exoplanets. We reach very high pressures, until where the behavior is analytically established; this permitted us to construct a numerical fit for water in a very large temperature and pressure range. The other planetary ices (methane and ammonia) were thenstudied in the conditions of our solar system.We then considered white dwarves, and their cooling dynamics: they are the most usualstar remnants, so that they can be used as cosmochronometers. The composition of these objects lead to binary phase transitions, which can have important consequences on their cooling time. We used ab inition methods to investigate this binary diagram, and wesuggest new numerical strategies, leading to new results which partially confirm theprevious literature.
La connaissance des étoiles et des planètes denses nécessite une détermination fine du comportement thermodynamique de la matière dans ces objets. L'une des approches les plus fécondes aujourd'hui est celle des simulations ab initio, utilisant le formalisme de la physique statistique et la théorie de la fonctionnelle de la densité. Cette approche a notamment montré ses performances en reproduisant avec succès un grand nombre de résultats expérimentaux.Dans la première partie de ce travail de thèse, ces méthodes sont appliquées à l'étude des« glaces », impliquées dans des planètes telles que Uranus ou Neptune. Nous avons dans un premier temps confirmé le travail pré-existant sur le cas de l'eau (équations d'état et existence d'une phase superionique), puis nos avons étendu ces résultats aux cas de planètes plus denses, telles que les exoplanètes appelées« super-Jupiters ». Nous atteignons des limites de pression auxquelles le comportement est analytiquement connu, nous permettant de proposer un ajustement numérique pour l'eau dans une gamme de pression et température extrêmement large. Les autres glaces(méthane et ammoniac) ont seulement été étudiés dans les conditions des planètes de notre système solaire.Nous nous sommes ensuite intéressés au cas des naines blanches et à leur dynamique de refroidissement ~; il s'agit des restes d'étoiles les plus courants, et ils peuvent ainsi être utilisés comme moyen de datation de la galaxie. En particulier, la composition de ces objets conduit à des transitions de phase binaires ayant de lourdes répercussions sur leur temps de refroidissement. Nous avons investigué ce diagramme binaire à l'aide d'une méthode ab initio, et nous proposons de nouvelles stratégies numériques ainsi que des résultats confirmant partiellement les récents travaux dans le domaine.
Domaines
Astrophysique [astro-ph]Origine | Version validée par le jury (STAR) |
---|