A walk through randomness for face analysis in unconstrained environments
Etude des méthodes aléatoires pour l'analyse de visage en environnement non contraint
Résumé
Automatic face analysis is a key to the development of intelligent human-computer interaction systems and behavior understanding. However, there exist a number of factors that makes face analysis a difficult problem. This include morphological differences between different persons, head pose variations as well as the possibility of partial occlusions. In this PhD, we propose a number of adaptations of the so-called Random Forest algorithm to specifically adress those problems. Mainly, those improvements consist in:– The development of a Pairwise Conditional Random Forest framework, that consists in training Random Forests upon pairs of expressive images. Pairwise trees are conditionned on the expression label of the first frame of a pair to reduce the ongoing expression transition variability. Additionnally, trees can be conditionned upon a head pose estimate to peform facial expression recognition from an arbitrary viewpoint.– The design of a hierarchical autoencoder network to model the local face texture patterns. The reconstruction error of this network provides a confidence measurement that can be used to weight Randomized decision trees trained on spatially-defined local subspace of the face. Thus, we can provide an expression prediction that is robust to partial occlusions.– Improvements over the very recent Neural Decision Forests framework, that include both a simplified training procedure as well as a new greedy evaluation procedure, that allows to dramatically improve the evaluation runtime, with applications for online learning and, deep learning convolutional neural network-based features for facial expression recognition as well as feature point alignement.
L'analyse automatique des expressions faciales est une étape clef pour le développement d'interfaces intelligentes ou l'analyse de comportements. Toutefois, celle-ci est rendue difficile par un grand nombre de facteurs, pouvant être d'ordre morphologiques, liés à l'orientation du visage ou à la présence d'occultations. Nous proposons des adaptations des Random Forest permettant d' adresser ces problématiques:- Le développement des Pairwise Conditional Random Forest, consistant en l'apprentissage de modèles à partir de paires d'images expressives. Les arbres sont de plus conditionnés par rapport à l'expression de la première image afin de réduire la variabilité des transitions. De plus, il est possible de conditionner les arbres en rapport avec une estimation de la pose du visage afin de permettre la reconnaissance quel que soit le point de vue considéré.- L'utilisation de réseaux de neurones auto-associatifs pour modéliser localement l'apparence du visage. Ces réseaux fournissent une mesure de confiance qui peut être utilisée dans le but de pondérer des Random Forests définies sur des sous-espaces locaux du visage. Ce faisant, il est possible de fournir une prédiction d'expression robuste aux occultations partielles du visage.- Des améliorations du récemment proposé algorithme des Neural Decision Forests, lesquelles consistent en une procédure d'apprentissage simplifiée, ainsi qu'en une évaluation "greedy" permettant une évaluation plus rapide, avec des applications liées à l'apprentissage en ligne de représentations profondes pour la reconnaissance des expressions, ainsi que l'alignement de points caractéristiques.
Origine | Version validée par le jury (STAR) |
---|