Volumetric tracking of 3D deformable shapes
Suivi volumétrique de formes 3D non rigides
Résumé
In this thesis we propose algorithms for tracking 3D deformable shapes in motion from multiview video. Although series of reconstructed 3D shapes can be obtained by applying a static reconstruction algorithm to each temporal frame independently, such series do not represent motion. Instead, we want to provide a temporally coherent representation of the sequence of shapes resulting from temporal evolutions of a shape. Precisely, we want to represent the observed shape sequence as a 3D surface mesh whose vertices move in time but whose topology is constant.In contrast with most existing approaches, we propose to represent the motion of inner shape volumes, with the aim of better accounting for the volumetric nature of the observed object. We provide a fully volumetric approach to the fundamental problems of deformable shape tracking, which are the association between corresponding shape elements and the deformation model. In particular, we extend to a volumetric shape representation the EM-ICP tracking framework and the association-by-detection strategy.Furthermore, in order to better constrain the shape tracking problem, we propose a model for the temporal evolution of deformation. Our deformation model defines a shape space parametrized by variables that capture local deformation properties of the shape and whose values are automatically learned during the tracking process.We validate our tracking algorithms on several multiview video sequences with ground truth (silhouette and marker-based tracking). Our results are better or comparable to state of the art approaches.Finally, we show that volumetric tracking and the shape representation we choose can be leveraged for producing shape animations which combine captured and simulatated motion.
Dans cette thèse nous proposons des algorithmes pour le suivi 3D du mouvement des objects déformables à partir de plusieurs caméras vidéo. Bien qu’une suite de reconstructions tridimensionnelles peut être obtenue par des méthodes de reconstruction statique, celle-ci ne représente pas le mouvement. Nous voulons produire une représentation temporellement cohérente de la suite de formes prises par l’object. Précisément, nous souhaitons représenter l’objet par une surface maillée 3D dont les sommets se déplacent au cours du temps mais dont la topologie reste identique.Contrairement à beaucoup d’approches existantes, nous proposons de représenter le mouvement du volume intérieur des formes, dans le but de mieux représenter la nature volumétrique des objets. Nous traitons de manière volumétrique les problèmes fondamentaux du suivi déformable que sont l’association d’éléments semblables entre deux formes et la modélisation de la déformation. En particulier, nous adaptons au formes volumétriques les modèles d’association EM-ICP non-rigide ansi que l’association par détection par apprentissage automatique.D’autre part, nous abordons la question de la modélisation de l’évolution temporelle de la déformation au cours d’une séquence dans le but de mieux contraindre le problème du suivi temporel. Pour cela, nous modélisons un espace de forme construit autour de propriétés de déformations locales que nous apprenons automatiqument lors du suivi.Nous validons nos algorithmes de suivi sur des séquences vidéo multi-caméras avec vérité terrain (silhouettes et suivi par marqueurs). Nos résultats se révèlent meilleurs ou équivalents à ceux obtenus avec les méthodes de l’état de l’art.Enfin, nous démontrons que le suivi volumétrique et la représentation que nous avons choisie permettent de produire des animations 3D qui combinent l’acquisition et la simulation de mouvement.
Origine | Version validée par le jury (STAR) |
---|
Loading...