Skip to Main content Skip to Navigation
New interface

Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups

Abstract : Algebraic combinatorics is the research field that uses combinatorial methods and algorithms to study algebraic computation, and applies algebraic tools to combinatorial problems. One of the central topics of algebraic combinatorics is the study of permutations, interpreted in many different ways (as bijections, permutation matrices, words over integers, total orders on integers, vertices of the permutahedron…). This rich diversity of perspectives leads to the following generalizations of the symmetric group. On the geometric side, the symmetric group generated by simple transpositions is the canonical example of finite reflection groups, also called Coxeter groups. On the monoidal side, the simple transpositions become bubble sort operators that generate the 0-Hecke monoid, whose algebra is the specialization at q=0 of Iwahori’s q-deformation of the symmetric group. This thesis deals with two further generalizations of permutations. In the first part of this thesis, we first focus on partial permutations matrices, that is placements of pairwise non attacking rooks on a n by n chessboard, simply called rooks. Rooks generate the rook monoid, a generalization of the symmetric group. In this thesis we introduce and study the 0-Rook monoid, a generalization of the 0-Hecke monoid. Its algebra is a proper degeneracy at q = 0 of the q-deformed rook monoid of Solomon. We study fundamental monoidal properties of the 0-rook monoid (Green orders, lattice property of the R-order, J-triviality) which allow us to describe its representation theory (simple and projective modules, projectivity on the 0-Hecke monoid, restriction and induction along an inclusion map).Rook monoids are actually type A instances of the family of Renner monoids, which are completions of the Weyl groups (crystallographic Coxeter groups) for Zariski’s topology. In the second part of this thesis we extend our type A results to define and give a presentation of 0-Renner monoids in type B and D. This also leads to a presentation of the Renner monoids of type B and D, correcting a misleading presentation that appeared earlier in the litterature. As in type A we study the monoidal properties of the 0-Renner monoids of type B and D : they are still J-trivial but their R-order are not lattices anymore. We study nonetheless their representation theory and the restriction of projective modules over the corresponding 0-Hecke monoids. The third part of this thesis deals with different generalizations of permutations. In a recent series of papers, Châtel, Pilaud and Pons revisit the algebraic combinatorics of permutations (weak order, Malvenuto-Reutenauer Hopf algebra) in terms of the combinatorics of integer posets. This perspective encompasses as well the combinatorics of quotients of the weak order such as binary trees, binary sequences, and more generally the recent permutrees of Pilaud and Pons. We generalize the weak order on the elements of the Weyl groups. This enables us to describe the order on vertices of the permutahedra, generalized associahedra and cubes in the same unified context. These results are based on subtle properties of sums of roots in Weyl groups, and actually fail for non-crystallographic Coxeter groups.
Complete list of metadata
Contributor : ABES STAR :  Contact
Submitted on : Friday, August 24, 2018 - 11:09:07 AM
Last modification on : Thursday, October 6, 2022 - 10:34:37 AM
Long-term archiving on: : Sunday, November 25, 2018 - 1:29:03 PM


Version validated by the jury (STAR)


  • HAL Id : tel-01861199, version 1


Joël Gay. Representation of Monoids and Lattice Structures in the Combinatorics of Weyl Groups. Discrete Mathematics [cs.DM]. Université Paris Saclay (COmUE), 2018. English. ⟨NNT : 2018SACLS209⟩. ⟨tel-01861199⟩



Record views


Files downloads