Development of hybrid photocathodes for solar hydrogen production - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2015

Development of hybrid photocathodes for solar hydrogen production

Développement de photocathodes hybrides pour la production de carburant solaire

Résumé

One of the challenges of the 21st century is to produce clean and inexpensive energy at the TW scale to face the increasing energy demand and the global climate change. Because renewable energies are intermittent, they must be converted and stored in order to use them at the same scale of fossil energies. Hydrogen appears to be an ideal energy carrier when it is produced from water and sunlight. This fuel can be stored, transported and use on-demand by its combination with oxygen, for example in a fuel cell. Photo-electrochemical (PEC) cells able to carry out the photo-electrolysis of water are not yet cost-effective, because most of the materials used for their fabrication are rare or expensive (platinum, crystalline semiconductors). Producing hydrogen in a PEC cell at industrial scale depends on the finding of readily-available and easily-processed materials. In this thesis, the development of a noble-metal free hydrogen-evolving photocathode was undertaken, to reduce protons from light and acidic water. The photo-converting unit was based organic semiconductors organized in a polymer-fullerene bulk-heterojunction layer (P3HT:PCBM) coupled to amorphous molybdenum sulfide (MoS3) as a catalyst. In the device, the P3HT:PCBM layer absorbs the photons and the photogenerated electrons are then transported to the interface with the catalyst, which uses the electrons to produce hydrogen. After studying each material (catalyst and solar cell) separately and checking the alignment of their energy levels, the first assemblies were made by solution processes. The deposition methods were adapted depending on the nature of the materials. Spin-coating and spray were used for the deposition of the light-harvesting unit and the catalyst, respectively. With the photo-electrochemical characterization setup, a photocurrent of up to 100 μA cm–2 was obtained, corresponding to production of hydrogen, as analyzed by gas chromatography. These first results proved the viability of the concept of this hybrid noble-metal free photocathode. In order to improve the photocathode performance, new configurations were designed. Firstly, interfacial materials placed between P3HT:PCBM and MoS3 (electron-extracting layer, EEL) were studied to improve charge collection by the catalyst. Among studied materials, photocathodes with titanium protected aluminum reached up to 10 mA cm–2 of photocurrent. The presence of aluminum induced instability in aqueous media, so that oxides (TiOx) and organic materials (C60 fullerene and graphene) were considered. TiOx brought only a slight improvement compared to photocathodes without EELs, while C60 allowed to reach 5 mA cm–2 but with a lower stability compared to metallic EELs. The origin of the increased performances with EELs was attributed to the burying of the photovoltaic junction, removing the influence of the electrolyte. Secondly, the material between the transparent electrode and the photovoltaic part, i.e. the holeextracting layer (HEL), was replaced by amorphous oxides (graphene oxide (GO), MoOx, NiOx). It led to the fabrication of performant photocathodes, stables for several hours, by process temperatures below 150 °C in the case of MoOx and GO. The increase of the performance seemed to be related to the increase of the HEL work function, leading to the suggestion that the Fermi level difference between the HEL and the electrolyte has an impact on the capacity of the photocathode to separate the charges and use them for photocatalysis. The most performant photocathodes (several mA cm–2 and 0.6 V of photovoltage) were the one with MoOx, i.e. the material with the largest work function, and had a much better stability than the photocathodes with metallic EELs.
L’utilisation des énergies renouvelables, qui sont intermittentes, à l’égal des énergies fossiles (échelle du TW) doit passer par leur conversion et stockage en un vecteur transportable. L’hydrogène semble le vecteur énergétique idéal qui peut être produit à partir de l’eau et de l’énergie solaire. Ce carburant peut ainsi être stocké, transporté puis utilisé à la demande en le combinant avec l’oxygène dans une pile à combustible. Les cellules photo-électrochimiques (PEC) utilisées pour la conversion ne sont actuellement pas rentables car les matériaux majoritairement utilisés pour leur fabrication, tels que le platine et les semiconducteurs cristallins, sont rares ou chers. Le point clé est de trouver des matériaux qui soient disponibles en grande quantité et facilement mis en forme. Ce travail de thèse concerne le développement d’une photocathode sans matériau rare pour la photoproduction de H2 via la réduction des protons à partir de l’énergie solaire et de l’eau. Pour cela, une cellule solaire à hétérojonction polymère-fullerène (P3HT:PCBM) a été couplée directement à un catalyseur sans métal précieux, MoS3. La cellule solaire absorbe les photons, et les électrons photogénérés sont ensuite acheminés jusqu’au catalyseur qui les utilise pour produire l’hydrogène. Après avoir étudié chacun des matériaux (cellule solaire et catalyseur) séparément et vérifié le bon alignement des niveaux énergétiques, les premiers assemblages ont été faits par des procédés en solution. Les méthodes de dépôt ont dû être adaptées en fonction de la nature des matériaux. Ainsi, le spin-coating et le spray ont été utilisés respectivement pour déposer la partie photovoltaïque et le catalyseur. Les caractérisations photo-électrochimiques mises en place ont permis de mettre en évidence la présence d’un photo-courant (100 μA cm–2) correspondant à la production d’hydrogène, qui a été analysé par chromatographie en phase gazeuse. Ces résultats ont permis de montrer la viabilité des photocathodes hybrides sans matériau noble. Afin d’augmenter les performances des photocathodes, de nouvelles configurations ont été conçues. Dans un premier temps des matériaux d’interface entre la couche mince photovoltaïque et le catalyseur ont été étudié (couche extractrice d’électrons, CEE) pour améliorer la collection des électrons photogénérés par le catalyseur. Parmi les métaux étudiés, l’aluminium protégé par le titane a permis d’atteindre des photocourants de 10 mA cm–2. Cependant la présence de l’aluminium induisait une instabilité en milieu aqueux, aussi des oxydes (TiOx) et des matériaux organiques (fullerène C60 et graphène) ont été envisagés. Le TiOx n’a permis qu’une légère amélioration par rapport aux photocathodes sans CEE, tandis que le C60 a permis d’atteindre 5 mA cm–2 mais avec une stabilité moindre par rapport aux CEE métalliques. L’origine de l’amélioration des performances a été attribuée à l’isolement de la jonction photovoltaïque par rapport à l’électrolyte. Dans une deuxième approche, la couche extractrice de trous (CET) située entre l’électrode transparente et le P3HT:PCBM a été remplacée par des oxydes amorphes (oxyde de graphène (GO), MoOx, NiOx). Ce changement a permis la réalisation de photocathodes performantes et stables pendant plusieurs heures, avec des températures de dépôt ne dépassant pas 150 °C dans le cas du MoOx et du GO. L’augmentation des performances semblant aller de pair avec l’augmentation du travail de sortie de la CET, il a été suggéré que la différence des niveaux de Fermi de la CET et de l’électrolyte avait un impact sur la capacité de la photocathode à séparer les charges et les utiliser pour la photocatalyse. Les photocathodes avec MoOx (matériau testé avec le plus grand travail de sortie) ont les meilleurs rendements (plusieurs mA cm–2 et un photovoltage de 0.6 V), et présentent une plus grande stabilité par rapport aux photocathodes ayant une CTE métallique.
Fichier principal
Vignette du fichier
BourgeteauTiphaine_2015.pdf (8.03 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

tel-01870902 , version 1 (10-09-2018)

Identifiants

  • HAL Id : tel-01870902 , version 1

Citer

Thiphaine Bourgeteau. Development of hybrid photocathodes for solar hydrogen production. Material chemistry. Ecole polytechnique X, 2015. English. ⟨NNT : ⟩. ⟨tel-01870902⟩
267 Consultations
180 Téléchargements

Partager

Gmail Facebook X LinkedIn More