Unbalanced Optimal Transport : Models, Numerical Methods, Applications - TEL - Thèses en ligne
Thèse Année : 2017

Unbalanced Optimal Transport : Models, Numerical Methods, Applications

Transport optimal de mesures positives : modèles, méthodes numériques, applications

Résumé

This thesis generalizes optimal transport beyond the classical "balanced" setting of probability distributions. We define unbalanced optimal transport models between nonnegative measures, based either on the notion of interpolation or the notion of coupling of measures. We show relationships between these approaches. One of the outcomes of this framework is a generalization of the p-Wasserstein metrics. Secondly, we build numerical methods to solve interpolation and coupling-based models. We study, in particular, a new family of scaling algorithms that generalize Sinkhorn's algorithm. The third part deals with applications. It contains a theoretical and numerical study of a Hele-Shaw type gradient flow in the space of nonnegative measures. It also adresses the case of measures taking values in the cone of positive semi-definite matrices, for which we introduce a model that achieves a balance between geometrical accuracy and algorithmic efficiency.
L'objet de cette thèse est d'étendre le cadre théorique et les méthodes numériques du transport optimal à des objets plus généraux que des mesures de probabilité. En premier lieu, nous définissons des modèles de transport optimal entre mesures positives suivant deux approches, interpolation et couplage de mesures, dont nous montrons l'équivalence. De ces modèles découle une généralisation des métriques de Wasserstein. Dans une seconde partie, nous développons des méthodes numériques pour résoudre les deux formulations et étudions en particulier une nouvelle famille d'algorithmes de "scaling", s'appliquant à une grande variété de problèmes. La troisième partie contient des illustrations ainsi que l'étude théorique et numérique, d'un flot de gradient de type Hele-Shaw dans l'espace des mesures. Pour les mesures à valeurs matricielles, nous proposons aussi un modèle de transport optimal qui permet un bon arbitrage entre fidélité géométrique et efficacité algorithmique.
Fichier principal
Vignette du fichier
These-Finale-CHIZAT.pdf (4.86 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)
Loading...

Dates et versions

tel-01881166 , version 1 (25-09-2018)

Identifiants

  • HAL Id : tel-01881166 , version 1

Citer

Lenaic Chizat. Unbalanced Optimal Transport : Models, Numerical Methods, Applications. Numerical Analysis [math.NA]. Université Paris sciences et lettres, 2017. English. ⟨NNT : 2017PSLED063⟩. ⟨tel-01881166⟩
836 Consultations
2529 Téléchargements

Partager

More