Adaptive storage for autonomous and battery-free wireless sensor node
Stockage adaptatif pour noeud de capteur sans fil autonome et sans batterie
Résumé
Energy autonomy is a major challenge in the massive deployment of wireless sensor networks in numerous applications. Energy harvesting and storage can serve as solutions to the autonomy issues. However, the harsh environment of certain applications requires a long lifetime since the use of batteries for storage is prohibited. We then resort to storage on ultra-capacitors. This type of storage has disadvantages that require a compromise between 3 factors: the fast charge of ultra-capacitors (low capacity), the maximum energy storage (strong capacity), and the maximization of stored energy utilization (low residual voltage). To meet these seemingly contradictory criteria, we propose three self-adaptive storage architectures. The first consists of a matrix of four identical ultra-capacitors, interconnected by switches, whose equivalent capacity adapts to the stored energy. The second and third architectures consist of two ultra-capacitors, one of low capacity and the other of large capacity, the difference between the two architectures being related to the number and type of switches used. The self-adaptive storage architectures that we propose include a suitable self-powered control circuitry to vary the apparent capacity of the device. In addition, each architecture allows a cold start with completely empty ultra-capacitors. These three architectures were first optimized through simulation, and then validated experimentally with discrete components. Finally, we implemented the self-adaptive storage architecture with two ultra-capacitors in a completely wireless measurement system, using an energy harvesting source and its associated electronics for its power supply, and demonstrated the relevance of this approach of reconfigurable storage. In conclusion, we deduce that the topologies can reach an efficiency of energy usage of up to 94.7% by employing discrete components, a value that could be further improved through the exploitation of a silicon integrated version for both the control circuitry and the ultra-capacitors.
L'autonomie énergétique est un verrou majeur au déploiement massif de réseau de capteurs sans fil dans nombreuses applications. La récupération d'énergie et son stockage constituent une voie pour améliorer cette autonomie. Dans certaines applications en environnement sévère ou nécessitant des durées de vie élevées, l'utilisation de batteries pour le stockage est prohibée. On a alors recours à du stockage sur supercondensateurs. Ce type de stockage présente des inconvénients nécessitant un compromis entre 3 facteurs : la charge rapide des supercondensateurs (capacité faible), l'énergie maximale stockée (capacité forte) et la maximisation de l'usage de l'énergie stockée (tension résiduelle basse). Pour répondre à ces critères apparemment contradictoires, nous avons proposé trois architectures de stockage auto-adaptatif. La première est composée d'une matrice de quatre supercondensateurs identiques, interconnectés par des interrupteurs, dont la capacité équivalente s'adapte à l'énergie stockée. Les deuxième et troisième architectures sont constituées de deux supercondensateurs, l'une de capacité faible et l'autre de capacité grande, la différence entre les deux architectures étant liée au nombre et type d'interrupteurs utilisés. Les architectures de stockage auto-adaptatif que nous avons proposées incluent une circuiterie de contrôle appropriée autoalimentée et permettant de faire varier la capacité apparente du dispositif. De plus, chaque architecture permet un démarrage à froid avec des supercondensateurs complètement vides. Ces trois architectures ont d'abord été optimisées en simulation puis validées expérimentalement en composants discrets. Finalement, nous avons implémenté l'architecture de stockage auto-adaptatif à deux supercondensateurs au sein d'un système de mesure sans fil complet utilisant une source de récupération d'énergie et son électronique associée pour son alimentation et montré la pertinence de cette approche de stockage reconfigurable. En termes d'efficacité d'usage de l'énergie, elles permettent d'atteindre jusqu'à 94,7% en composants discrets, valeur qui pourrait être encore améliorée en version intégrée sur silicium à la fois pour la circuiterie de contrôle et les supercondensateurs.
Origine | Version validée par le jury (STAR) |
---|
Loading...