Fonctionnalisation de matériaux composites à renfort carbone et matrice thermoplastique par adjonction de nanocharges : élaboration et étude du comportement - TEL - Thèses en ligne
Thèse Année : 2017

Functionalization of carbon fibers reinforced thermoplastic polymer by the use of nanofillers : fabrication and behavior study

Fonctionnalisation de matériaux composites à renfort carbone et matrice thermoplastique par adjonction de nanocharges : élaboration et étude du comportement

Khalil Hamdi
  • Fonction : Auteur

Résumé

To extend the use of composites in more varied application (smart applications, multifunctional issues), one of the actual barrier is their poor electrical and thermal conductivities. In the case of carbon fiber reinforced composites, organic matrix are in charge of the insulating properties of the resulting composite. One of the solutions to enhance conductivities of materials is the use of conductive nanofillers. Improving the electrical and thermal properties of nanofilled polymers has been investigated in several studies. However, studiing the properties of continuous carbon fiber nano-filled composites is less approached. This work tends to fabricate and characterize carbon black and carbon nanotubes nano-filled composites. First of all, special interest was given to the delicate phase of manufacturing. As mentioned before, processing continuous fiber reinforced nanofilled polymers implies issues related to nanofillers agglomeration and inhomogeneous dispersion in the final composite. To resolve these problems, the choice of the thermoplastic (Polyamide6) matrix seemed preferable. In fact, the dispersion of nanofillers was made by twin screw extrusion which is known as one of the most effective agglomeration separation ways. Adding to this, the fabrication method based on Polyamide 6 shects called film stacking, ensure a homogeneous partition at the beginning of the process. SEM observations were performed to localize the nano-particles. It showed that particles penetrated on the fiber zone. In fact, by reaching the fiber zone, the nano-fillers created network connectivity between fibers which means an easy pathway for the current. It explains the noticed improvement of the electrical conductivity of the composites by adding carbon black and carbon nanotube. This test was performed with the 4 points electrical circuit. It shows that electrical conductivity of 'neat' matrix composite passed from 20S/cm to 80S/cm by adding 8wt% of carbon black and to 15S/cm by adding 18wt% of the same nano-filler. For carbon nanotubes, with '2.5wt% the conductivity was around 150S/cm. For the thermal properties, tests based on Joule's effect were performed. The rise of temperature was recorded using IR camera. Results obtained are in agreement with the electrical conductivity ones, showing enhancement of the thermal behavior in presence of nanofillers. Thanks to these results, the use of these composites as a damage-monitoring tool was possible. By the way, the electrical resistance change method was performed. Nanofilled materials showed better sensitivity to damage. Results were compared with classical damage monitoring tools. At the end, several 'smart' applications were tested such as graded functionalities composite and stitched nanofilled materials.
Pour étendre l'utilisation des composites dans des applications plus variées (applications intelligentes et multifonctionnelles), l'une des barrières est leur faible conductivité électrique et thermique. Dans le cas de composites renforcés par des fibres de carbone, la matrice organique est responsable des propriétés isolantes du composite résultant. L'une des solutions pour améliorer les conductivités des matériaux est l'utilisation des nanocharges conductrices. L'amélioration des propriétés électriques et thermiques des polymères nanochargés est une problématique récurrente dans la littérature. Cependant, étudier les propriétés des composites à fibre de carbone continue et nanochargés est moins abordée. Ce travail porte sur la fabrication et la caractérisation des composites nanochargés par du noir de carbone et des nanotubes de carbone. Tout d'abord, un intérêt particulier a été accordé à la phase délicate de la fabrication. Comme mentionné ci-dessus, la mise en œuvre des composites à renfort continu et matrice nanochargée implique des problèmes liés à l'agglomération et à la dispersion inhomogène des nanocharges dans le composite final. Pour résoudre ces problèmes, le choix de la matrice thermoplastique (Polyamide 6) était judicieux. En fait, la dispersion des nanocharges a été faite par extrusion bi-vis qui est connue comme l'une des voies les plus efficaces de séparation d'agglomérats. De plus, la méthode de fabrication à base de films de Polyamide 6, appelée film stacking, assure une partition homogène dès le début du processus. Des observations MEB ont été effectuées pour localiser les nanoparticules. Ceux-là ont montré que les particules pénétraient dans la zone des fibres. En effet, en atteignant le cœur des torons, les nano-charges ont créé un réseau de connectivité entre les fibres pour le passage de courant. Ceci explique l'amélioration constatée de la conductivité électrique des composites en présence de noir de carbone et des nanotubes de carbone. Ces essais ont été réalisés avec la méthode à 4 points. La conductivité électrique du composite à matrice « pure » est passée de 20S / cm à 80S / cm en ajoutant 8% en poids de noir de carbone et à 15S / cm en ajoutant 18% en poids de la même charge nanométrique. Pour les nanotubes de carbone, avec 2,5% en poids, la conductivité était d'environ 150S / cm. Pour les propriétés thermiques, des tests basés sur l'effet Joule ont été réalisés. L'augmentation de la température a été enregistrée en utilisant une caméra IR. Les résultats obtenus sont en accord avec ceux de la conductivité électrique, montrant une amélioration du comportement thermique en présence de nanocharges. Grâce à ces résultats, l'utilisation de ces composites comme outil de suivi d’endommagement était possible. Par ailleurs, la méthode de variation de la résistance électrique a été effectuée. Les matériaux nanochargés ont montré une meilleure sensibilité aux endommagements. Les résultats ont été comparés aux outils classiques de suivi d’endommagement. A la fin, plusieurs applications « intelligentes » ont été testées telles que : le composite à gradients de propriétés et des matériaux nanochargés cousus.
Fichier principal
Vignette du fichier
These_UTC_Khalil_Hamdi.pdf (7.34 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)
Loading...

Dates et versions

tel-02073075 , version 1 (19-03-2019)

Identifiants

  • HAL Id : tel-02073075 , version 1

Citer

Khalil Hamdi. Fonctionnalisation de matériaux composites à renfort carbone et matrice thermoplastique par adjonction de nanocharges : élaboration et étude du comportement. Mécanique [physics.med-ph]. Université de Technologie de Compiègne, 2017. Français. ⟨NNT : 2017COMP2388⟩. ⟨tel-02073075⟩
372 Consultations
769 Téléchargements

Partager

More