Skip to Main content Skip to Navigation
New interface

Structure-function relationships of the lysine decarboxylase from Pseudomonas aeruginosa

Abstract : The lysine decarboxylase (LDC) belongs to a family of decameric PLP-dependent enzymes that catalyse the reaction transforming L-Lysine into cadaverine while consuming a proton. They are known to be involved in polyamine metabolism and during acid and oxidative stress responses.In enterobacteria like Escherichia coli, two paralogs are present, LdcI and LdcC. LdcI takes part in acid stress response by buffering bacterial cytoplasm. LdcC is produced during stationary phase and also when bacteria face fluoroquinolone treatment. The cadaverine produced by LDCs is known to scavenge reactive oxygen species (ROS) and is capable of blocking outer membrane proteins, thus reducing the permeability of molecules responsible for acid and oxidative stresses. The activity of the LDCs from E. coli is coordinated with the stringent response (nutrient starvation) in order to prevent intracellular L-Lysine depletion. The stringent response signal molecule ppGpp is able to bind directly to LDCs and inhibit their enzymatic activity. However, the inhibition of the LdcI can be prevented by the formation of a cage-like complex with its partner RavA allowing bacteria to face the challenge of both acid and nutrient stresses.Since mechanisms allowing bacteria to counter stress challenges are important for displaying full virulence, we wondered if the opportunistic bacterium Pseudomonas aeruginosa could be using LdcA to counter stress conditions that have already been described for LdcI in enterobacteria. During my PhD, we addressed this question by using different but complementary approaches.First of all, we used promoter-gene fusions and western-blot analysis to determine the conditions in which ldcA was expressed and its product synthesized. We could observe that ldcA is expressed on stationary phase under aerobic conditions in rich media and also during nitrate-respiring anaerobic conditions. As previously described in literature, we also confirmed that ldcA expression is regulated by ArgR and fully induced when L-Arginine is present in the growth medium. Even though we found out that acid and oxidative stress conditions do not induce the expression of ldcA, we obtained new data suggesting that other regulation mechanisms such as the quinolone signal system (PQS) could be involved in ldcA expression.In paralell, we constructed an ldcA mutant and its complemented strain to understand whether LdcA was involved in acid and oxidative stress response. Although the data obtained by using manual screenings and high-throughput technologies (Biolog) revealed that LdcA is not displaying the same functions as LdcI, we discovered that the cadaverine produced by LdcA is needed for full growth fitness when growing in minimal medium using L-glutamate as carbon source. Since slow growing phenotypes are linked to heightened bacterial persistence and because cadaverine has been shown to reduce the persisters population, we also examined if the presence of LdcA is modifying the amount of persisters during carbenicillin treatment. Our data has confirmed that this is indeed the case.Finally, by combining phylogenetic and structural analysis, we discovered that LdcA belongs to a different subgroup of bacterial LDCs. Sequence alignments show that key residues needed for binding ppGpp are not present in the predicted binding site which also suggests that the enzymatic activity is not inhibited by this molecule. And biochemical analysis has confirmed that this is indeed the case as it is the case for Arginine decarboxylases.Our work shows that, in spite of the fact that LdcA catalyses the same enzymatic reaction and shares the same structural fold than LdcI and LdcC, it is not implicated in acid stress or oxidative stress responses. Its role is linked to physiological effects of cadaverine and to the relationship between L-lysine and L-Arginine catabolism.
Complete list of metadata

Cited literature [373 references]  Display  Hide  Download
Contributor : ABES STAR :  Contact
Submitted on : Thursday, May 16, 2019 - 1:02:59 AM
Last modification on : Saturday, March 26, 2022 - 3:17:30 AM


Version validated by the jury (STAR)


  • HAL Id : tel-02130621, version 1



Diego Carriel. Structure-function relationships of the lysine decarboxylase from Pseudomonas aeruginosa. Structural Biology [q-bio.BM]. Université Grenoble Alpes, 2017. English. ⟨NNT : 2017GREAV011⟩. ⟨tel-02130621⟩



Record views


Files downloads