Contributions to Software Runtime for Clustered Manycores Applied to Embedded and High-Performance Applications - Archive ouverte HAL Access content directly
Theses Year : 2018

Contributions to Software Runtime for Clustered Manycores Applied to Embedded and High-Performance Applications

Contributions aux environnements d’exécution pour processeurs massivement parallèles et clustérisés appliqués aux applications embarquées et hautes performances

(1)
1

Abstract

The growing need for computing is more and more challenging, especially in the embedded system world with autonomous cars, drones, and smartphones. New highly parallel and heterogeneous processors emerge to answer this challenge. They operate in constrained environments with real-time requirements, reduced power consumption, and safety. Programming these new chips is a time-consuming and challenging task leading to huge software development costs. The Kalray MPPA® processor is a competitive example for low-power super-computing on a single chip. It integrates up to 288 VLIW cores grouped in 18 clusters, each fitted with shared local memory. These clusters are interconnected with a high-bandwidth network-on-chip, and DMA engines are used to communicate. This processor is used in this thesis for experimental results. We propose the AOS library enabling highperformance communications and synchronizations of distributed local memories on clustered manycores. AOS provides 70% of the peak hardware throughput for transfers larger than 8 KB. We propose tools for the implementation of static and dynamic dataflow programs based on AOS to accelerate the parallel application developments onto clustered manycores. We propose an implementation of OpenVX for clustered manycores on top of AOS. OpenVX is a standard based on dataflow for the development of computer vision and neural network computing. The proposed OpenVX implementation includes automatic optimizations like data prefetch to overlap communications and computations, or kernel fusion to avoid the main memory bandwidth bottleneck. Results show super-linear speedups.
Le besoin en calculs est toujours plus important et difficile à satisfaire, spécialement dans le domaine de l’informatique embarquée qui inclue les voitures autonomes, drones et téléphones intelligents. Les systèmes embarqués doivent respecter des contraintes fortes de temps, de consommation et de sécurité. Les nouveaux processeurs parallèles et hétérogènes comme le MPPA® de Kalray utilisé dans cette thèse, doivent alors combiner haute performance et basse consommation. Pour cela, le MPPA® intègre 288 coeurs, regroupés en 18 clusters à mémoire locale partagée, un réseau sur puce et des moteurs DMA pour les communications. Ces processeurs sont difficiles à programmer, engendrant des coûts de développement importants. Cette thèse a pour objectif de simplifier leur programmation tout en optimisant les performances finales. Nous proposons pour cela AOS, une librairie de communication et synchronisation haute performance gérant les mémoires locales distribuées des processeurs clustérisés. La librairie atteint 70% de la crête matérielle pour des transferts supérieurs à 8 KB. Nous proposons plusieurs outils de développement basés sur AOS et des modèles de programmation flux-dedonnées pour accélérer le développement d’applications parallèles pour processeurs clustérisés, notamment OpenVX qui est un nouveau standard pour les applications de vision et les réseaux de neurones. Nous automatisons l’optimisation de l’application OpenVX en faisant du pré-chargement de données et en les fusionnants, pour éviter le mur de la bande passante mémoire externe. Les résultats montrent des facteurs d’accélération super linéaires.
Fichier principal
Vignette du fichier
pdfaTheseJulienHascoet.pdf (20.75 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)
Loading...

Dates and versions

tel-02132613 , version 1 (17-05-2019)

Identifiers

  • HAL Id : tel-02132613 , version 1

Cite

Julien Hascoët. Contributions to Software Runtime for Clustered Manycores Applied to Embedded and High-Performance Applications. Embedded Systems. INSA de Rennes, 2018. English. ⟨NNT : 2018ISAR0029⟩. ⟨tel-02132613⟩
224 View
235 Download

Share

Gmail Facebook Twitter LinkedIn More