Stability analysis of coupled ordinary differential systems with a string equation : application to a drilling mechanism
Analyse de stabilité de systèmes différentiels ordinaires couplés avec une équation des ondes : application aux mécanismes de forage
Résumé
This thesis is about the stability analysis of a coupled finite dimensional system and an infinite dimensional one. This kind of systems emerges in the physics since it is related to the modeling of structures for instance. The generic analysis of such systems is complex, mainly because of their different nature. Here, the analysis is conducted using different methodologies. First, the recent Quadratic Separation framework is used to deal with the frequency aspect of such systems. Then, a second result is derived using a Lyapunov-based argument. All the results are obtained considering the projections of the infinite dimensional state on a basis of polynomials. It is then possible to take into account the coupling between the two systems. That results in tractable and reliable numerical tests with a moderate conservatism. Moreover, a hierarchy on the stability conditions is shown in the Lyapunov case. The real application to a drilling mechanism is proposed to illustrate the efficiency of the method and it opens new perspectives. For instance, using the notion of practical stability, we show that a PI-controlled drillstring is subject to a limit cycle and that it is possible to estimate its amplitude.
Cette thèse porte sur l'analyse de stabilité de couplage entre deux systèmes, l'un de dimension finie et l'autre infinie. Ce type de systèmes apparait en physique car il est intimement lié aux modèles de structures. L'analyse générique de tels systèmes est complexe à cause des natures très différentes de chacun des sous-systèmes. Ici, l'analyse est conduite en utilisant deux méthodologies. Tout d'abord, la séparation quadratique est utilisée pour traiter le côté fréquentiel de ce système couplé. L'autre méthode est basée sur la théorie de Lyapunov pour prouver la stabilité asymptotique de l'interconnexion. Tous ces résultats sont obtenus en utilisant la méthode de projection de l'état de dimension infinie sur une base polynomiale. Il est alors possible de prendre en compte le couplage entre les deux systèmes et ainsi d'obtenir des tests numériques fiables, rapides et peu conservatifs. De plus, une hiérarchie de conditions est établie dans le cas de Lyapunov. L'application au cas concret du forage pétrolier est proposée pour illustrer l'efficacité de la méthode et les nouvelles perspectives qu'elle offre. Par exemple, en utilisant la notion de stabilité pratique, nous avons montré qu'une tige de forage controlée à l'aide d'un PI est sujette à un cycle limite et qu'il est possible d'estimer son amplitude.
Origine | Version validée par le jury (STAR) |
---|
Loading...