Factors influencing the thermal insulation potential of different thermal barrier coating systems - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Factors influencing the thermal insulation potential of different thermal barrier coating systems

Facteurs influençant la capacité d'isolation thermique de différents systèmes de revêtements "barrière thermique"

Résumé

In aeronautical gas turbine engines, the metallic materials employed in the hottest sections are subject to very harsh chemical environments at high pressures and temperatures. Therefore, thermal barrier coating systems (TBCs) are applied onto nickel-based superalloy substrates. These multi-layered systems (ceramic yttria-stabilized zirconia (YSZ) / MCrAl or NiPtAl bond coats / cooled substrate) lower the temperature at the components surface, which ensures an adequate thermomechanical behaviour and reduces the oxidation/corrosion rates. However, the increase of the turbine inlet temperature (increased engine performance) brings about new degradation phenomena (e.g. CMAS) and loss of efficiency of the current TBCs. Therefore, understanding the evolution of the insulation ability of TBCs in such harsh environments is key from both the scientific and technological perspectives to estimate the lifetime of these coatings, hence that of the engines. Based on current plasma-sprayed (PS) and electron-beam physical vapour deposited (EB-PVD) YSZ coatings, this thesis seeks to provide a better comprehension on the relationships between the intrinsic properties of the current TBCs and their thermal insulation capacity as a basis for the development of future coatings. Also, this work studies an alternative solution to create a TBC made of hollow alumina microspheres by the slurry route. We will show that the sintering of the YSZ, the evolution of crystal phases, the reactions between YSZ and CMAS and the growth of thermal oxides alter the thermal diffusivity to different extents. In contrast, the evolution of the thermal diffusivity with temperature is less marked with the slurry alumina coatings, which appear more stable when hybrid Ar/air annealing atmospheres are employed upon their synthesis.
Dans les turbines à gaz aéronautiques, les matériaux employés dans les parties les plus chaudes sont soumis à des environnements chimiques extrêmes, sous fortes pressions et températures. Ainsi, des systèmes de revêtement « barrière thermique, BT » sont appliqués sur les substrats en superalliage à base nickel. Ces systèmes multicouches (zircone stabilisée à l’yttrine (YSZ) /couche de liaison en MCrAl ou NiPtAl/substrat refroidi) permettent d’abaisser la température à la surface des pièces, conduisant à un comportement thermomécanique adéquat et à une diminution des vitesses d’oxydation/corrosion. Cependant, l’augmentation nécessaire de la température des gaz d’entrée de turbine (augmentation du rendement moteur) entraîne de nouveaux phénomènes de dégradation (CMAS) et une perte d’efficacité des revêtements BT actuels. Par ailleurs, l’évaluation de la durée de vie des revêtements BT s’avère cruciale pour déterminer celle des moteurs. Comprendre l’évolution du pouvoir isolant des revêtements BT en environnement agressif constitue donc un enjeu essentiel du point de vue scientifique et technologique. A partir des revêtements couramment employés (YSZ) déposés par projection plasma (PS) ou en phase vapeur (EB-PVD), la présente étude a visé à mieux comprendre l’effet de l’évolution des propriétés microstructurales et chimiques des revêtements sur leur pouvoir isolant, dans le but de développer des outils nécessaires à la mise au point des revêtements du futur. De plus, une partie des travaux menés a porté sur une solution alternative plus économique et écologique d’élaboration de revêtements BT, fondée sur un procédé par voie barbotine, permettant in fine d’obtenir une barrière constituée de microsphères creuses d’alumine. Ce travail a permis de montrer que l’évolution par frittage des phases céramiques en YSZ, les changements de phase cristalline, les réactions avec les CMAS et la croissance d’oxydes thermiques modifient la diffusivité thermique. En revanche, celle-ci évolue moins avec la température puisque les revêtements en alumine issus de barbotines se sont avérés plus stables et ce, notamment, lorsque leur élaboration a été réalisée sous atmosphères hybrides (mélanges Ar/air).
Fichier principal
Vignette du fichier
2019Boissonnet125751B.pdf (10.3 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-02528825 , version 1 (02-04-2020)

Identifiants

  • HAL Id : tel-02528825 , version 1

Citer

Germain Boissonnet. Factors influencing the thermal insulation potential of different thermal barrier coating systems. Materials. Université de La Rochelle, 2019. English. ⟨NNT : 2019LAROS007⟩. ⟨tel-02528825⟩
301 Consultations
357 Téléchargements

Partager

Gmail Facebook X LinkedIn More