Local matching learning of large scale biomedical ontologies
Alignement local automatique de larges ontologies biomédicales
Résumé
Although a considerable body of research work has addressed the problem of ontology matching, few studies have tackled the large ontologies used in the biomedical domain. We introduce a fully automated local matching learning approach that breaks down a large ontology matching task into a set of independent local sub-matching tasks. This approach integrates a novel partitioning algorithm as well as a set of matching learning techniques. The partitioning method is based on hierarchical clustering and does not generate isolated partitions. The matching learning approach employs different techniques: (i) local matching tasks are independently and automatically aligned using their local classifiers, which are based on local training sets built from element level and structure level features, (ii) resampling techniques are used to balance each local training set, and (iii) feature selection techniques are used to automatically select the appropriate tuning parameters for each local matching context. Our local matching learning approach generates a set of combined alignments from each local matching task, and experiments show that a multiple local classifier approach outperforms conventional, state-of-the-art approaches: these use a single classifier for the whole ontology matching task. In addition, focusing on context-aware local training sets based on local feature selection and resampling techniques significantly enhances the obtained results.
Les larges ontologies biomédicales décrivent généralement le même domaine d'intérêt, mais en utilisant des modèles de modélisation et des vocabulaires différents. Aligner ces ontologies qui sont complexes et hétérogènes est une tâche fastidieuse. Les systèmes de matching doivent fournir des résultats de haute qualité en tenant compte de la grande taille de ces ressources. Les systèmes de matching d'ontologies doivent résoudre deux problèmes: (i) intégrer la grande taille d'ontologies, (ii) automatiser le processus d'alignement. Le matching d'ontologies est une tâche difficile en raison de la large taille des ontologies. Les systèmes de matching d'ontologies combinent différents types de matcher pour résoudre ces problèmes. Les principaux problèmes de l'alignement de larges ontologies biomédicales sont: l'hétérogénéité conceptuelle, l'espace de recherche élevé et la qualité réduite des alignements résultants. Les systèmes d'alignement d'ontologies combinent différents matchers afin de réduire l'hétérogénéité. Cette combinaison devrait définir le choix des matchers à combiner et le poids. Différents matchers traitent différents types d'hétérogénéité. Par conséquent, le paramétrage d'un matcher devrait être automatisé par les systèmes d'alignement d'ontologies afin d'obtenir une bonne qualité de correspondance. Nous avons proposé une approche appele "local matching learning" pour faire face à la fois à la grande taille des ontologies et au problème de l'automatisation. Nous divisons un gros problème d'alignement en un ensemble de problèmes d'alignement locaux plus petits. Chaque problème d'alignement local est indépendamment aligné par une approche d'apprentissage automatique. Nous réduisons l'énorme espace de recherche en un ensemble de taches de recherche de corresondances locales plus petites. Nous pouvons aligner efficacement chaque tache de recherche de corresondances locale pour obtenir une meilleure qualité de correspondance. Notre approche de partitionnement se base sur une nouvelle stratégie à découpes multiples générant des partitions non volumineuses et non isolées. Par conséquence, nous pouvons surmonter le problème de l'hétérogénéité conceptuelle. Le nouvel algorithme de partitionnement est basé sur le clustering hiérarchique par agglomération (CHA). Cette approche génère un ensemble de tâches de correspondance locale avec un taux de couverture suffisant avec aucune partition isolée. Chaque tâche d'alignement local est automatiquement alignée en se basant sur les techniques d'apprentissage automatique. Un classificateur local aligne une seule tâche d'alignement local. Les classificateurs locaux sont basés sur des features élémentaires et structurelles. L'attribut class de chaque set de donne d'apprentissage " training set" est automatiquement étiqueté à l'aide d'une base de connaissances externe. Nous avons appliqué une technique de sélection de features pour chaque classificateur local afin de sélectionner les matchers appropriés pour chaque tâche d'alignement local. Cette approche réduit la complexité d'alignement et augmente la précision globale par rapport aux méthodes d'apprentissage traditionnelles. Nous avons prouvé que l'approche de partitionnement est meilleure que les approches actuelles en terme de précision, de taux de couverture et d'absence de partitions isolées. Nous avons évalué l'approche d'apprentissage d'alignement local à l'aide de diverses expériences basées sur des jeux de données d'OAEI 2018. Nous avons déduit qu'il est avantageux de diviser une grande tâche d'alignement d'ontologies en un ensemble de tâches d'alignement locaux. L'espace de recherche est réduit, ce qui réduit le nombre de faux négatifs et de faux positifs. L'application de techniques de sélection de caractéristiques à chaque classificateur local augmente la valeur de rappel pour chaque tâche d'alignement local.
Origine | Version validée par le jury (STAR) |
---|
Loading...