Low level feature detection in SAR images - TEL - Thèses en ligne Access content directly
Theses Year : 2020

Low level feature detection in SAR images

Détection de caractéristiques de bas niveau dans les images SAR

Abstract

In this thesis we develop low level feature detectors for Synthetic Aperture Radar (SAR) images to facilitate the joint use of SAR and optical data. Line segments and edges are very important low level features in images which can be used for many applications like image analysis, image registration and object detection. Contrarily to the availability of many efficient low level feature detectors dedicated to optical images, there are very few efficient line segment detector and edge detector for SAR images mostly because of the strong multiplicative noise. In this thesis we develop a generic line segment detector and an efficient edge detector for SAR images.The proposed line segment detector which is named as LSDSAR, is based on a Markovian a contrario model and the Helmholtz principle, where line segments are validated according to their meaningfulness. More specifically, a line segment is validated if its expected number of occurences in a random image under the hypothesis of the Markovian a contrario model is small. Contrarily to the usual a contrario approaches, the Markovian a contrario model allows strong filtering in the gradient computation step, since dependencies between local orientations of neighbouring pixels are permitted thanks to the use of a first order Markov chain. The proposed Markovian a contrario model based line segment detector LSDSAR benefit from the accuracy and efficiency of the new definition of the background model, indeed, many true line segments in SAR images are detected with a control of the number of false detections. Moreover, very little parameter tuning is required in the practical applications of LSDSAR. The second work of this thesis is that we propose a deep learning based edge detector for SAR images. The contributions of the proposed edge detector are two fold: 1) under the hypothesis that both optical images and real SAR images can be divided into piecewise constant areas, we propose to simulate a SAR dataset using optical dataset; 2) we propose to train a classical CNN (convolutional neural network) edge detector, HED, directly on the graident fields of images. This, by using an adequate method to compute the gradient, enables SAR images at test time to have statistics similar to the training set as inputs to the network. More precisely, the gradient distribution for all homogeneous areas are the same and the gradient distribution for two homogeneous areas across boundaries depends only on the ratio of their mean intensity values. The proposed method, GRHED, significantly improves the state-of-the-art, especially in very noisy cases such as 1-look images.
Dans cette thèse, nous développons des détecteurs de caractéristiques de bas niveau pour les images radar à synthèse d'ouverture (SAR) afin de faciliter l'utilisation conjointe des données SAR et optiques. Les segments de droite et les bords sont des caractéristiques de bas niveau très importantes dans les images qui peuvent être utilisées pour de nombreuses applications comme l'analyse ou le stockage d'images, ainsi que la détection d'objets. Alors qu'il existe de nombreux détecteurs efficaces pour les structures bas-niveau dans les images optiques, il existe très peu de détecteurs de ce type pour les images SAR, principalement en raison du fort bruit multiplicatif. Dans cette thèse, nous développons un détecteur de segment de droite générique et un détecteur de bords efficace pour les images SAR. Le détecteur de segment de droite proposé, nommé LSDSAR, est basé sur un modèle Markovien a contrario et le principe de Helmholtz, où les segments de droite sont validés en fonction d'une mesure de significativité. Plus précisément, un segment de droite est validé si son nombre attendu d'occurrences dans une image aléatoire sous l'hypothèse du modèle Markovien a contrario est petit. Contrairement aux approches habituelles a contrario, le modèle Markovien a contrario permet un filtrage fort dans l'étape de calcul du gradient, car les dépendances entre les orientations locales des pixels voisins sont autorisées grâce à l'utilisation d'une chaîne de Markov de premier ordre. Le détecteur de segments de droite basé sur le modèle Markovian a contrario proposé LSDSAR, bénéficie de la précision et l'efficacité de la nouvelle définition du modèle de fond, car de nombreux segments de droite vraie dans les images SAR sont détectés avec un contrôle du nombre de faux détections. De plus, très peu de réglages de paramètres sont requis dans les applications pratiques de LSDSAR.Dans la deuxième partie de cette thèse, nous proposons un détecteur de bords basé sur l'apprentissage profond pour les images SAR. Les contributions du détecteur de bords proposé sont doubles: 1) sous l'hypothèse que les images optiques et les images SAR réelles peuvent être divisées en zones constantes par morceaux, nous proposons de simuler un ensemble de données SAR à l'aide d'un ensemble de données optiques; 2) Nous proposons d'appliquer un réseaux de neurones convolutionnel classique, HED, directement sur les champs de magnitude des images. Ceci permet aux images de test SAR d'avoir des statistiques semblables aux images optiques en entrée du réseau. Plus précisément, la distribution du gradient pour toutes les zones homogènes est la même et la distribution du gradient pour deux zones homogènes à travers les frontières ne dépend que du rapport de leur intensité moyenne valeurs. Le détecteur de bords proposé, GRHED permet d'améliorer significativement l'état de l'art, en particulier en présence de fort bruit (images 1-look).
Fichier principal
Vignette du fichier
85140_LIU_2020_archivage.pdf (34.23 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)
Loading...

Dates and versions

tel-02861903 , version 1 (09-06-2020)

Identifiers

  • HAL Id : tel-02861903 , version 1

Cite

Chenguang Liu. Low level feature detection in SAR images. Computer Vision and Pattern Recognition [cs.CV]. Institut Polytechnique de Paris, 2020. English. ⟨NNT : 2020IPPAT015⟩. ⟨tel-02861903⟩
323 View
34 Download

Share

Gmail Facebook X LinkedIn More