From commercials off-the-shelf to expected propulsion in nanosatellites
Utilisation de composants sur étagère pour la propulsion des nanosatellites : à quel prix ?
Résumé
The domain of nano/microsatellites has been irreversibly modified by the apparition of the CubeSat standard. The exponential growth of CubeSat launches during the past 20 years, combined with the growing interest of private companies and space agencies has confirmed the sustainability of a new approach to space missions: standardization, short release cycle and shared launches. This standard has paved the way to the democratization of subsystems available as "commercial off-the-shelf" (COTS). However, because of the drastic constraints imposed by the standard in terms of mass, volume and power, most CubeSats to date were launched in Low Earth Orbit (LEO). Among the limitations that this class of satellites still faces is the orbit control. It is expected to allow more flexibility to LEO missions and pave the way to interplanetary trajectories.This thesis aims to highlight the remaining discrepancies between the CubeSat philosophy and the complexity of the Attitude and Orbit Control System (AOCS), and tackle some of them. Current "commercial off-the-shelf" (COTS) approach tends to consider each subsystem individually, making it difficult to ensure performances at system level. For our concern, the distinction between the attitude control and the orbit control (ADCS/GNC) hides inherent mutual impacts. This work proposes a high-level approach based on identified representative cases, such as deorbiting from LEO, escaping Earth orbit or proximity operations. Thanks to a functional analysis, the fundamental links between the required subsystems for a successful orbital maneuver are emphasized. We show that the conventional approach tends to neglect the attitude control required to ensure the expected pointing during the maneuver, usually considered to be within the limits of the non-dedicated ADCS. Classical performance indexes for propulsion systems are proved to be deficient, for instance focusing on the propellant mass at the expense of the dry mass of the system. They also omit the effects of the power and thermal requirements in terms of added mass, which sometimes result in unrealistic solutions at the CubeSat scale.The thrusters' impact on the design of the ADCS is quantified through the development of an AOCS simulation environment. Important increases in maneuver duration and propellant consumption, even mission loss, are observed. As a results, we propose solutions to ensure the success of expected orbital maneuvers. COTS propulsion systems’ classical description is revisited with an enhanced system performance index, taking into account the multiple implications of a thruster integration.
L’apparition du standard CubeSat a profondément modifié le domaine des nano/microsatellites, notamment en promouvant la standardisation, des développements plus courts et des lancements partagés. L’intérêt combiné des agences spatiales et des entreprises a permis une forte croissance des lancements de CubeSats depuis vingt ans. De nombreux « composants sur étagère » sont maintenant développés dans le respect de ce standard. Pourtant, les contraintes importantes résultant de ce format réduit en termes de masse, volume et puissance disponibles ont jusqu’à présent limité l’envoi de CubeSats aux orbites terrestres basses. Des progrès sont en cours pour ce qui concerne le contrôle orbital et doivent permettre d’offrir à ces satellites plus de flexibilité, et notamment ouvrir la porte à des missions plus exotiques telles que des missions interplanétaires.Cette thèse s’intéresse aux difficultés d’application de la philosophie des CubeSats au Système de Contrôle d’Attitude et d’Orbite (SCAO). L’utilisation de « composants sur étagère » pousse à considérer chaque sous-système indépendamment, pouvant conduire à des performances dégradées au niveau du satellite. En particulier, la distinction entre le système de contrôle d’attitude et celui d’orbite (SCA/GNC) cache des impacts mutuels non négligeables. Ce travail développe une analyse de haut niveau sur différents cas d’étude représentatifs des besoins identifiés tels que la désorbitation depuis une orbite basse, la sortie de l’orbite terrestre ou encore les opérations de proximité. Une analyse fonctionnelle met l’accent sur les connexions entre les différents sous-systèmes nécessaires à la réussite de ces manœuvres orbitales. Il en ressort que l’approche conventionnelle a tendance à considérer que le contrôle de la direction de poussée ne nécessite pas de sous-système dédié. Les indices de performance usuels des systèmes de propulsions sont quant à eux lacunaires. Ils mettent l’accent sur la masse de carburant au dépend de la masse sèche du système, et ils omettent la masse supplémentaire que représentent les besoins électriques et thermiques, conduisant parfois à des propositions infaisables au format CubeSat. L’impact des propulseurs sur le design du SCA est quantifié à travers le développement d’un environnement de simulation du SCAO. On y observe d’importantes augmentations de la durée des manœuvres et de la consommation de carburant, voire une perte du satellite. En conséquence, des propositions sont faites pour permettre la réalisation du contrôle orbital souhaité. La description classique des systèmes de propulsion est quant à elle revisitée afin de fournir un indice prenant en compte l’ensemble des effets liés à l’intégration de propulseurs.
Domaines
Astrophysique [astro-ph]Origine | Version validée par le jury (STAR) |
---|
Loading...