Power-index based management of fraud detection rules : Supervised and semi-supervised Approches
Gestion des règles basée sur l'indice de puissance pour la détection de fraude : Approches supervisées et semi-supervisées
Résumé
This thesis deals with the detection of credit card fraud. According to the European Central Bank, the value of frauds using cards in 2016 amounted to 1.8 billion euros. The challenge for institutions is to reduce these frauds. In general, fraud detection systems consist of an automatic system built with "if-then" rules that control all incoming transactions and trigger an alert if the transaction is considered suspicious. An expert group checks the alert and decides whether it is true or not. The criteria used in the selection of the rules that are kept operational are mainly based on the individual performance of the rules. This approach ignores the non-additivity of the rules. We propose a new approach using power indices. This approach assigns to the rules a normalized score that quantifies the influence of the rule on the overall performance of the group. The indexes we use are the Shapley Value and Banzhaf Value. Their applications are 1) Decision support to keep or delete a rule; 2) Selection of the number k of best-ranked rules, in order to work with a more compact set. Using real credit card fraud data, we show that: 1) This approach performs better than the one that evaluates the rules in isolation. 2) The performance of the set of rules can be achieved by keeping one-tenth of the rules. We observe that this application can be considered as a task of selection of characteristics: We show that our approach is comparable to the current algorithms of the selection of characteristics. It has an advantage in rule management because it assigns a standard score to each rule. This is not the case for most algorithms, which focus only on an overall solution. We propose a new version of Banzhaf Value, namely k-Banzhaf; which outperforms the previous in terms of computing time and has comparable performance. Finally, we implement a self-learning process to reinforce the learning in an automatic learning algorithm. We compare these with our power indices to rank credit card fraud data. In conclusion, we observe that the selection of characteristics based on the power indices has comparable results with the other algorithms in the self-learning process.
Cette thèse traite de la détection de fraude par carte de crédit. Selon la Banque Centrale Européenne, la valeur des fraudes utilisant des cartes en 2016 s'élevait à 1,8 milliard d'euros. Le défis pour les institutions est de réduire ces fraudes. En règle générale, les systèmes de détection de la fraude sont consistués d'un système automatique construit à base de règles "si-alors" qui contrôlent toutes les transactions en entrée et déclenchent une alerte si la transaction est considérée suspecte. Un groupe expert vérifie l'alerte et décide si cette dernière est vrai ou pas. Les critères utilisés dans la sélection des règles maintenues opérationnelles sont principalement basés sur la performance individuelle des règles. Cette approche ignore en effet la non-additivité des règles. Nous proposons une nouvelle approche utilisant des indices de puissance. Cette approche attribue aux règles un score normalisé qui quantifie l'influence de la règle sur les performances globales du groupe de règles. Les indice utilisés sont le "Shapley Value" et le "Banzhaf Value". Leurs applications sont: 1) Aide à la décision de conserver ou supprimer une règle; 2) Sélection du nombre k de règles les mieux classées, afin de travailler avec un ensemble plus compact. En utilisant des données réelles de fraude par carte de crédit, nous montrons que: 1) Cette approche permet de mieux évaluer les performances du groupe plutot que de les évaluer isolément. 2) La performance de l'ensemble des règles peut être atteinte en conservant le dixième des règles. Nous observons que cette application peut être comsidérée comme une tâche de sélection de caractéristiques:ainsi nous montrons que notre approche est comparable aux algorithmes courants de sélection des caractéristiques. Il présente un avantage dans la gestion des règles, car attribue un score normalisé à chaque règle. Ce qui n'est pas le cas pour la plupart des algorithmes, qui se concentrent uniquement sur une solution d'ensemble. Nous proposons une nouvelle version du Banzhaf Value, à savoir le k-Banzhaf; qui surclasse la précedente en terme de temps de calcul et possède des performances comparables. Enfin, nous mettons en œuvre un processus d’auto-apprentissage afin de renforcer l’apprentissage dans un algorithme. Nous comparons ces derniers avec nos trois indices de puissance pour effectuer une classification sur les données de fraude par carte de crédit. En conclusion, nous observons que la sélection de caractéristiques basée sur les indices de puissance a des résultats comparables avec les autres algorithmes dans le processus d'auto-apprentissage.
Origine | Version validée par le jury (STAR) |
---|
Loading...