Unsupervised motifs detection in handwritten music scores
Détection non-supervisée de motifs dans les partitions musicales manuscrites
Abstract
This thesis is part of the data mining applied to ancient handwritten music scores and aims at a search for frequent melodic or rhythmic motifs defined as repetitive note sequences with characteristic properties. There are a large number of possible variations of motifs: transpositions, inversions and so-called "mirror" motifs. These motifs allow musicologists to have a level of in-depth analysis on the works of a composer or a musical style. In a context of exploring large corpora where scores are just digitized and not transcribed, an automated search for motifs that verify targeted constraints becomes an essential tool for their study. To achieve the objective of detecting frequent motifs without prior knowledge, we started from images of digitized scores. After pre-processing steps on the image, we exploited and adapted a model for detecting and recognizing musical primitives (note-heads, stems...) from the family of Region-Proposal CNN (RPN) convolution neural networks. We then developed a primitive encoding method to generate a sequence of notes without the complex task of transcribing the entire manuscript work. This sequence was then analyzed using the CSMA (Constraint String Mining Algorithm) approach designed to detect the frequent motifs present in one or more sequences, taking into account constraints on their frequency and length, as well as the size and number of gaps allowed within the motifs. The gap was then studied to avoid recognition errors produced by the RPN network, thus avoiding the implementation of a post-correction system for transcription errors. The work was finally validated by the study of musical motifs for composers identification and classification.
Cette thèse s'inscrit dans le contexte de la fouille de données appliquées aux partitions musicales manuscrites anciennes et vise une recherche de motifs mélodiques ou rythmiques fréquents définis comme des séquences de notes répétitives aux propriétés caractéristiques. On rencontre un grand nombre de déclinaisons possibles de motifs : les transpositions, les inversions et les motifs dits « miroirs ». Ces motifs permettent aux musicologues d'avoir un niveau d'analyse approfondi sur les œuvres d'un compositeur ou d'un style musical. Dans un contexte d'exploration de corpus de grande taille où les partitions sont juste numérisées et non transcrites, une recherche automatisée de motifs vérifiant des contraintes ciblées devient un outil indispensable à leur étude. Pour la réalisation de l'objectif de détection de motifs fréquents sans connaissance a priori, nous sommes partis d'images de partitions numérisées. Après des étapes de prétraitements sur l'image, nous avons exploité et adapté un modèle de détection et de reconnaissance de primitives musicales (tête de notes, hampes...) de la famille de réseaux de neurones à convolutions de type Region-Proposal CNN (RPN). Nous avons ensuite développé une méthode d'encodage de primitives pour générer une séquence de notes en évitant la tâche complexe de transcription complète de l'œuvre manuscrite. Cette séquence a ensuite été analysée à travers l'approche CSMA (Contraint String Mining Algorithm) que nous avons conçue pour détecter les motifs fréquents présents dans une ou plusieurs séquences avec une prise en compte de contraintes sur leur fréquence et leur taille, ainsi que la taille et le nombre de sauts autorisés (gaps) à l'intérieur des motifs. La prise en compte du gap a ensuite été étudiée pour contourner les erreurs de reconnaissance produites par le réseau RPN évitant ainsi la mise en place d'un système de post-correction des erreurs de transcription des partitions. Le travail a été finalement validé par l'étude des motifs musicaux pour des applications d'identification et de classification de compositeurs.
Origin | Version validated by the jury (STAR) |
---|
Loading...