Around the Domino Problem - Combinatorial Structures and Algebraic Tools
Autour du problème du Domino - Structures combinatoires et outils algébriques
Résumé
Given a finite set of square tiles, the domino problem is the question of whether is it possible ta tile the plane using these tiles.This problem is known to be undecidable in the planar case, and is strongly linked ta the question of the periodicity of the tiling.ln this thesis we look at this problem in two different ways: we look at the particular case of low complexity tilings and we generalize it to more general structures than the plane: groups.A tiling of the plane is sa id of low complexity if there are at most mn rectangles of size m x n appearing in it. Nivat conjectured in 1997 that any such tiling must be periodic, with the consequence that the domino problem would be decidable for low complexity tilings. Using algebraic tools introduced by Kari and Szabados, we prove a generalized version of Nivat's conjecture for a particular class of tilings (a subclass of what is called of algebraic subshifts). We also manage to prove that Nivat's conjecture holds for uniformly recurrent tilings, with the consequence that the domino problem is indeed decidable for low-complexity tilings.The domino problem can be formulated in the more general context of Cayley graphs of groups. ln this thesis, we develop new techniques allowing to relate the Cayley graph of some groups with graphs of substitutions on words.A first technique allows us to show that there exists bath strongly periodic and weakly-but-not strongly a periodic tilings of the Baumslag-Solitar groups BS(l,n).A second technique is used to show that the domino problem is undecidable for surface groups. Which provides yet another class of groups verifying the conjecture saying that the domino problem of a group is decidable if and only if the group is virtually free.
Étant donné un ensemble fini de tuiles carrés, le problème du domino est la question : «est-il possible de paver le plan entier en utilisant ces tuiles ?» Ce problème est connu pour être indécidable dans le cas des pavages du plan, et est très fortement lié à la question de la périodicité des pavages. Dans cette thèse nous abordons ce problème de deux point de vue différents:en regardant le cas particulier des pavages de faible complexité et en le généralisant aux structures plus généra les des groupes.Un pavage du plan est dit de faible complexité s'il y apparait moins de mn rectangles de taille m x n. Nivat conjecture en 1997 qu'un tel pavage est nécessairement périodique, avec comme conséquence que le problème du domino serait décidable pour les pavages de faible complexité. En continuant de développer des outils algébriques introduits par Kari et Szabados, nous prouvons une version généralisée de la conjecture de Nivat pour une classe de pavages particuliers (certains des sous-décalage algébrique). Nous parvenons également à montrer que la conjecture de Nivat est vraie pour tout pavage uniformément récurrent, avec comme conséquence que le problème du domino est effectivement décidable pour les pavages de faible complexité.Le problème du domino peut se formuler dans le cadre plus général des graphes de Cayley de groupes. Dans cette thèse nous développons de nouvelles techniques permettant de relier les graphes de Cayley de certains groupes à des graphes de substitutions.Une première technique nous permet de montrer qu'il existe à la fois des pavages fortement apériodiques et faiblement-non-fortement apériodiques pour les groupes de Baumslag-Solitar BS(l,n). Une seconde nous permet de montrer que le problème du domino est indécidable pour les groupes de surface, ce qui fourni une nouvelle classe de groupe vérifiant la conjecture disant que que le problème du domino d'un groupe est décidable si et seulement si le groupe est virtuellement libre.
Origine | Version validée par le jury (STAR) |
---|
Loading...