New syntheses of N-heterocyclic carbene-stabilized gold nanoparticles - TEL - Thèses en ligne
Thèse Année : 2018

New syntheses of N-heterocyclic carbene-stabilized gold nanoparticles

Nouvelles synthèses de nanoparticules d'or stabilisées par des carbènes N-hétérocycliques

Résumé

Over the past decade, N-heterocyclic carbenes (NHC) have drawn considerable interest in the field of materials chemistry. Indeed, this relatively new class of ligands forms strong bonds with a wide range of metals and their structures and electronic properties can be tuned “at-will” through organic synthesis. This strong bond is of particular interest for gold nanoparticles. Indeed, gold nanoparticles have many potential applications, for example in sensors, catalysis or medicine, but those potential applications are sometimes hindered by a lack of stability of the surface ligand. A few syntheses of NHC-stabilized gold nanoparticles have already been described in the literature but each presents their own set of drawbacks. This thesis work has focused on the development of new syntheses of NHC-stabilized gold nanoparticles. First, by revisiting a literature procedure starting from imidazolium salts, we managed to develop a one-pot synthesis starting only from commercially available AuCl, NaBH4 and easily synthesized imidazolium salts. A totally new synthesis was developed using NHC-boranes, which are stable Lewis adducts. Here, we reported for the first time their use as a 2-in-1 reagent, able to reduce the metallic precursor and provide the nanoparticles stabilizing ligands. Finally, we are the first to report a synthesis of gold nanoparticles stabilized by mesoionic carbenes (MIC). MICs are a sub-class of NHCs synthesized by well-known “click-chemistry”, which present unique electronic properties. Throughout this work, special care was taken to characterize the nanoparticles, notably by XPS.
Récemment, les carbènes N-hétérocycliques (NHC) ont suscité un intérêt important dans le domaine de la chimie des matériaux. En effet, cette nouvelle catégorie de ligands forme des liaisons très fortes avec une diversité de métaux et leur structure, ainsi que leurs propriétés électroniques, peuvent être adaptées par de la synthèse organique. Cette forte liaison est d’un intérêt particulier dans le domaine des nanoparticules d’or (NP) et des synthèses ont déjà été proposées. En effet, les NPs présentent de nombreuses applications potentielles, par exemple dans les capteurs, en catalyse ou médecine, mais ces applications sont parfois freinées par un manque de stabilité du ligand de surface. Ce travail de thèse s’est concentré sur le développement de nouvelles synthèses de nanoparticules d’or stabilisées par des NHC. D’abord, en revisitant une procédure existante à base de sels d’imidazoliums, ce qui a mené à une synthèse n’utilisant que les composés commerciaux : AuCl et NaBH4 et des halogénures d’imidazolium, facilement obtenus. Une synthèse totalement nouvelle a ensuite été développée en utilisant des NHC-boranes qui sont des adduits de Lewis stables. Nous avons montré pour la première fois que les NHC-boranes peuvent être utilisés comme réactifs "2-en-1" dans la synthèse de NP : comme réducteurs du précurseur d’or et comme source de NHC. Enfin, nous sommes les premiers à décrire la synthèse de NP stabilisées par des carbènes mésoioniques (MIC).Les MICs sont une sous-catégorie des NHCs qui sont préparés par « chimie click » et qui présentent des propriétés électroniques uniques. Un intérêt particulier a été porté à la caractérisation des nanoparticules, notamment par XPS.
Fichier principal
Vignette du fichier
these_hippolyte_laura_2018.pdf (7.3 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03029247 , version 1 (28-11-2020)

Identifiants

  • HAL Id : tel-03029247 , version 1

Citer

Laura Hippolyte. New syntheses of N-heterocyclic carbene-stabilized gold nanoparticles. Material chemistry. Sorbonne Université, 2018. English. ⟨NNT : 2018SORUS148⟩. ⟨tel-03029247⟩
397 Consultations
564 Téléchargements

Partager

More