Automatic learning of next generation human-computer interactions
Apprentissage automatique des interactions homme-machine de la prochaine génération
Résumé
Artificial Intelligence (AI) and Human-Computer Interactions (HCIs) are two research fields with relatively few common work. HCI specialists usually design the way we interact with devices directly from observations and measures of human feedback, manually optimizing the user interface to better fit users’ expectations. This process is hard to optimize: ergonomy, intuitivity and ease of use are key features in a User Interface (UI) that are too complex to be simply modelled from interaction data. This drastically restrains the possible uses of Machine Learning (ML) in this design process. Currently, ML in HCI is mostly applied to gesture recognition and automatic display, e.g. advertisement or item suggestion. It is also used to fine tune an existing UI to better optimize it, but as of now it does not participate in designing new ways to interact with computers. Our main focus in this thesis is to use ML to develop new design strategies for overall better UIs. We want to use ML to build intelligent – understand precise, intuitive and adaptive – user interfaces using minimal handcrafting. We propose a novel approach to UI design: instead of letting the user adapt to the interface, we want the interface and the user to adapt mutually to each other. The goal is to reduce human bias in protocol definition while building co-adaptive interfaces able to further fit individual preferences. In order to do so, we will put to use the different mechanisms available in ML to automatically learn behaviors, build representations and take decisions. We will be experimenting on touch interfaces, as these interfaces are vastly used and can provide easily interpretable problems. The very first part of our work will focus on processing touch data and use supervised learning to build accurate classifiers of touch gestures. The second part will detail how Reinforcement Learning (RL) can be used to model and learn interaction protocols given user actions. Lastly, we will combine these RL models with unsupervised learning to build a setup allowing for the design of new interaction protocols without the need for real user data.
L’Intelligence Artificielle (IA) et les Interfaces Homme-Machine (IHM) sont deux champs de recherche avec relativement peu de travaux communs. Les spécialistes en IHM conçoivent habituellement les interfaces utilisateurs directement à partir d’observations et de mesures sur les interactions humaines, optimisant manuellement l’interface pour qu’elle corresponde au mieux aux attentes des utilisateurs. Ce processus est difficile à optimiser : l’ergonomie, l’intuitivité et la facilité d’utilisation sont autant de propriétés clé d’une interface utilisateur (IU) trop complexes pour être simplement modélisées à partir de données d’interaction. Ce constat restreint drastiquement les utilisations potentielles de l’apprentissage automatique dans ce processus de conception. A l’heure actuelle, l’apprentissage automatique dans les IHMs se cantonne majoritairement à la reconnaissance de gestes et à l’automatisation d’affichage, par exemple à des fins publicitaires ou pour suggérer une sélection. L’apprentissage automatique peut également être utilisé pour optimiser une interface utilisateur existante, mais il ne participe pour l’instant pas à concevoir de nouvelles façons d’intéragir. Notre objectif avec cette thèse est de proposer grâce à l’apprentissage automatique de nouvelles stratégies pour améliorer le processus de conception et les propriétés des IUs. Notre but est de définir de nouvelles IUs intelligentes – comprendre précises, intuitives et adaptatives – requérant un minimum d’interventions manuelles. Nous proposons une nouvelle approche à la conception d’IU : plutôt que l’utilisateur s’adapte à l’interface, nous cherchons à ce que l’utilisateur et l’interface s’adaptent mutuellement l’un à l’autre. Le but est d’une part de réduire le biais humain dans la conception de protocoles d’interactions, et d’autre part de construire des interfaces co-adaptatives capables de correspondre d’avantage aux préférences individuelles des utilisateurs. Pour ce faire, nous allons mettre à contribution les différents outils disponibles en apprentissage automatique afin d’apprendre automatiquement des comportements, des représentations et des prises de décision. Nous expérimenterons sur les interfaces tactiles pour deux raisons majeures : celles-ci sont largement utilisées et fournissent des problèmes facilement interprétables. La première partie de notre travail se focalisera sur le traitement des données tactiles et l’utilisation d’apprentissage supervisé pour la construction de classifieurs précis de gestes tactiles. La seconde partie détaillera comment l’apprentissage par renforcement peut être utilisé pour modéliser et apprendre des protocoles d’interaction en utilisant des gestes utilisateur. Enfin, nous combinerons ces modèles d’apprentissage par renforcement avec de l’apprentissage non supervisé pour définir une méthode de conception de nouveaux protocoles d’interaction ne nécessitant pas de données d’utilisation réelles.
Origine | Version validée par le jury (STAR) |
---|