Study of an ettringite-based thermochemical energy storage for buildings
Etude d'un stockage d'énergie thermochimique à base d'ettringite pour les bâtiments
Résumé
The high energy demands for space heating and domestic hot water in buildings, character-ized by peaks in consumption at the beginning and end of the day as well as in winter, repre-sent a major challenge in terms of the use of renewable energies. A system of thermochemical energy storage (TCES), one of the most promising accessible technologies, could store different types of energies as chemical potential without energy dissipation. As a recently studied TCES material, ettringite is suitable for large scale use due to its no-toxicity, low material cost, and high energy density at lowing operating temperature. The first objective of this thesis was to study the physicochemical properties of ettringite and the reaction mechanisms during the hydration (formation of ettringite) and dehydration (formation of meta-ettringite) processes. The knowledge obtained on the reaction kinetics and thermodynamics (Dehydration: Ett30.6 → Ett30 → Met12 → Met6; Hydration: Met7.4 → Met12 →24-hydrate → higher hydrates) allows better use of ettringite for heat storage/release (under different isothermal and isobaric conditions). After having studied the properties of pure ettringite, three different cementitious binders that are industrially producible were used to test different ettringite contents but also mixtures of particular hydrated phases. The work carried out made it possible to study the carbonation mechanisms of these different ettringite materials and to deduce some relevant information as to their durability in terms of their use in TCES. Finally, the ettringite-based material most resistant to the carbonation phenomenon has been characterized by different analysis techniques in order to better control the influence of ther-mo-physical parameters on its energy performance. This material was then incorporated into a fixed bed reactor in the form of a 56 mm high porous bed composed of granules (1–2 mm in diameter). The energy charging / discharging process carried out to study the reversibility of ettringite / meta-ettringite under various experimental conditions. The reactor tests then showed that a maximum instantaneous power of 915 W per kg of initial hydrated material and an energy-releasing density of 176 kWh/m3. These results will be very useful in designing a future prototype (in scale 1:1) containing ettringite materials for a heating system in buildings.
Les besoins en énergie dédiés au chauffage et à l'eau chaude sanitaire dans des bâtiments, caractérisés par des pics de consommation en début et en fin de journée tout comme en hiver, représentent un défi d’importance vis-à-vis de l'utilisation des énergies renouvelables. Une des technologies les plus prometteuses, se présente sous la forme d’un système de stockage d'énergie dit thermochimique (TCES). Ce mode de stockage permet en effet de stocker différents types d'énergie sous la forme d’un potentiel chimique et est caractérisé par une absence de dissipation d'énergie. En tant que matériau de stockage thermochimique récemment étudié, l'ettringite conviendrait ainsi à une utilisation à grande échelle en raison de sa non-toxicité, de son faible coût de production et de sa haute densité énergétique à basse température de fonctionnement. Cette thèse avait pour premier objectif d’étudier les propriétés physico-chimiques de l’ettringite et les mécanismes réactionnels lors des processus d'hydratation (formation d’ettringite) et de déshydratation (formation de méta-ettringite). Les connaissances acquises lors de ces travaux de thèse, vis-à-vis de la cinétique des réactions et des diagrammes thermodynamiques (Déshydratation: Ett30.6 → Ett30 → Met12 → Met6; Hydratation: Met7.4 → Met12 →hydrate de 24H2O→ hydrates supérieurs), permettront ainsi de mieux utiliser l'ettringite pour stocker/déstocker de la chaleur (à différentes conditions isothermes et isobares). Après avoir étudié les propriétés de l'ettringite pure, trois liants cimentaires distincts pouvant être produits industriellement ont été utilisés afin de tester des teneurs en ettringite différentes mais aussi des mélanges de phases hydratées particulières. Les travaux effectués ont permis d’étudier les mécanismes de carbonatation de ces différents matériaux ettringitiques et de déduire plusieurs informations pertinentes quant à leur durabilité dans le cadre d’une utilisation en tant que TCES. Enfin, le matériau cimentaire ettringitique le plus résistant au phénomène de carbonatation a été caractérisé par différentes techniques d’analyse afin de mieux maitriser l’influence des paramètres thermo-physiques sur sa performance énergétique. Ce matériau a ensuite été in-corporé dans un réacteur à lit fixe, sous la forme d’un lit poreux de 56 mm de hauteur composé de granulés de 1 à 2 mm de diamètre. Le processus de chargement/déchargement de l'énergie a été réalisé pour étudier la réversibilité du couple ettringite/méta-ettringite dans diverses conditions expérimentales. Les essais réalisés dans le réacteur ont alors montré qu’une puissance instantanée maximale de 915 W par kg de matière hydratée initiale et une densité de déstockage d'énergie de 176 kWh/m3 pouvaient être obtenues. Ces données seront très utiles pour envisager un futur prototype (à l’échelle 1:1) d’un système de chauffage contenant de l’ettringite et destiné aux bâtiments.
Mots clés
Thermochemical heat storage
Building energy saving
Heating
Carbonation
Kinetics
Hydratation
Deshydratation
Fixed-Bed reactor
Ion Etching Reactor - RIE
Thermal energy storage
Thermochemistry
Thermodynamics
Thermochemical heat storage
Cement
Energy performance
Porous bed
Thermal Behaviour
Thermique
Energétique du bâtiment
Chauffage des bâtiments
Carbonatation
Cinétique
Ettringite
Hydratation
Deshydratation
Réacteur à lit fixe
Réacteur à couplage capacitif - RIE
Stockage de chaleur
Thermochimie
Thermodynamique
Stockage de chaleur thermochimique
Matériau cimentaire
Performance énergétique
Lit poreux
Comportement thermique
Domaines
Thermique [physics.class-ph]Origine | Version validée par le jury (STAR) |
---|