A dictionary-based denoising method toward a robust segmentation of noisy and densely packed nuclei in 3D biological microscopy images - TEL - Thèses en ligne
Thèse Année : 2019

A dictionary-based denoising method toward a robust segmentation of noisy and densely packed nuclei in 3D biological microscopy images

Une méthode de débruitage basée sur la méthode des dictionnaires pour une segmentation robuste de noyaux bruités et denses dans des images biologiques 3D de microscopie

Résumé

Cells are the basic building blocks of all living organisms. All living organisms share life processes such as growth and development, movement, nutrition, excretion, reproduction, respiration and response to the environment. In cell biology research, understanding cells structure and function is essential for developing and testing new drugs. In addition, cell biology research provides a powerful tool to study embryo development. Furthermore, it helps the scientific research community to understand the effects of mutations and various diseases. Time-Lapse Fluorescence Microscopy (TLFM) is one of the most appreciated imaging techniques which can be used in live-cell imaging experiments to quantify various characteristics of cellular processes, i.e., cell survival, proliferation, migration, and differentiation. In TLFM imaging, not only spatial information is acquired, but also temporal information obtained by repeating imaging of a labeled sample at specific time points, as well as spectral information, that produces up to five-dimensional (X, Y, Z + Time + Channel) images. Typically, the generated datasets consist of several (hundreds or thousands) images, each containing hundreds to thousands of objects to be analyzed. To perform high-throughput quantification of cellular processes, nuclei segmentation and tracking should be performed in an automated manner. Nevertheless, nuclei segmentation and tracking are challenging tasks due to embedded noise, intensity inhomogeneity, shape variation as well as a weak boundary of nuclei. Although several nuclei segmentation approaches have been reported in the literature, dealing with embedded noise remains the most challenging part of any segmentation algorithm. We propose a novel 3D denoising algorithm, based on unsupervised dictionary learning and sparse representation, that can both enhance very faint and noisy nuclei, in addition, it simultaneously detects nuclei position accurately. Furthermore, our method is based on a limited number of parameters, with only one being critical, which is the approximate size of the objects of interest. The framework of the proposed method comprises image denoising, nuclei detection, and segmentation. In the denoising step, an initial dictionary is constructed by selecting random patches from the raw image then an iterative technique is implemented to update the dictionary and obtain the final one which is less noisy. Next, a detection map, based on the dictionary coefficients used to denoise the image, is used to detect marker points. Afterward, a thresholding-based approach is proposed to get the segmentation mask. Finally, a marker-controlled watershed approach is used to get the final nuclei segmentation result. We generate 3D synthetic images to study the effect of the few parameters of our method on cell nuclei detection and segmentation, and to understand the overall mechanism for selecting and tuning the significant parameters of the several datasets. These synthetic images have low contrast and low signal to noise ratio. Furthermore, they include touching spheres where these conditions simulate the same characteristics exist in the real datasets. The proposed framework shows that integrating our denoising method along with classical segmentation method works properly in the context of the most challenging cases. To evaluate the performance of the proposed method, two datasets from the cell tracking challenge are extensively tested. Across all datasets, the proposed method achieved very promising results with 96.96% recall for the C.elegans dataset. Besides, in the Drosophila dataset, our method achieved very high recall (99.3%).
Les cellules sont les éléments constitutifs de base de tout organisme vivant. Tous les organismes vivants partagent des processus vitaux tels que croissance, développement, mouvement, nutrition, excrétion, reproduction, respiration et réaction à l’environnement. En biologie cellulaire, comprendre la structure et fonction des cellules est essentielle pour développer et tester de nouveaux médicaments. Par ailleurs, cela aide aussi à l’étude du développement embryonnaire. Enfin, cela permet aux chercheurs de mieux comprendre les effets des mutations et de diverses maladies. La vidéo-microscopie (Time Lapse Fluorescence Microscopie) est l’une des techniques d’imagerie les plus utilisées afin de quantifier diverses caractéristiques des processus cellulaires, à savoir la survie, la prolifération, la migration ou la différenciation cellulaire. En vidéo-microscopie, non seulement les informations spatiales sont disponibles, mais aussi les informations temporelles en réitérant l’acquisition de l’échantillon, et enfin les informations spectrales, ce qui génère des données dites « cinq dimensions » (X, Y, Z + temps + canal). En règle générale, les jeux de données générés consistent en plusieurs (centaines ou milliers) d’images, chacune contenant des centaines ou milliers d’objets à analyser. Pour effectuer une quantification précise et à haut débit des processus cellulaires, les étapes de segmentation et de suivi des noyaux cellulaires doivent être effectuées de manière automatisée. Cependant, la segmentation et le suivi des noyaux sont des tâches difficiles dû notamment au bruit intrinsèque dans les images, à l’inhomogénéité de l’intensité, au changement de forme des noyaux ainsi qu’à un faible contraste des noyaux. Bien que plusieurs approches de segmentation des noyaux aient été rapportées dans la littérature, le fait de traiter le bruit intrinsèque reste la partie la plus difficile de tout algorithme de segmentation. Nous proposons un nouvel algorithme de débruitage 3D, basé sur l’apprentissage d’un dictionnaire non supervisé et une représentation parcimonieuse, qui à la fois améliore la visualisation des noyaux très peu contrastés et bruités, mais aussi détecte simultanément la position de ces noyaux avec précision. De plus, notre méthode possède un nombre limité de paramètres, un seul étant critique, à savoir la taille approximative des objets à traiter. Le cadre de la méthode proposée comprend le débruitage d’images, la détection des noyaux et leur segmentation. Dans l’étape de débruitage, un dictionnaire initial est construit en sélectionnant des régions (patches) aléatoires dans l’image originale, puis une technique itérative est implémentée pour mettre à jour ce dictionnaire afin d’obtenir un dictionnaire dont les éléments mis à jour présentent un meilleur contraste. Ensuite, une carte de détection, basée sur le calcul des coefficients du dictionnaire utilisés pour débruiter l’image, est utilisée pour détecter le centre approximatif des noyaux qui serviront de marqueurs pour la segmentation. Ensuite, une approche basée sur le seuillage est proposée pour obtenir le masque de segmentation des noyaux. Finalement, une approche de segmentation par partage des eaux contrôlée par les marqueurs est utilisée pour obtenir le résultat final de segmentation des noyaux. Nous avons créé des images synthétiques 3D afin d’étudier l’effet des paramètres de notre méthode sur la détection et la segmentation des noyaux, et pour comprendre le mécanisme global de sélection et de réglage de ces paramètres significatifs sur différents jeux de données.
Fichier principal
Vignette du fichier
NASSER_KHALAFALLAH_MAHMOUD_2019.pdf (20.72 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03144969 , version 1 (18-02-2021)

Identifiants

  • HAL Id : tel-03144969 , version 1

Citer

Lamees Nasser Khalafallah Mahmoud. A dictionary-based denoising method toward a robust segmentation of noisy and densely packed nuclei in 3D biological microscopy images. Signal and Image processing. Sorbonne Université, 2019. English. ⟨NNT : 2019SORUS283⟩. ⟨tel-03144969⟩
227 Consultations
42 Téléchargements

Partager

More