Optimisation of positron accumulation in the GBAR experiment and study of space propulsion based on antimatter - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2020

Optimisation of positron accumulation in the GBAR experiment and study of space propulsion based on antimatter

Optimisation de l'accumulation de positons dans l'expérience GBAR et étude de la propulsion spatiale à antimatière

Résumé

The goal of the GBAR experiment is to determine the effect of gravity on antihydrogen atoms. The antihydrogen atoms are created by neutralising antihydrogen ions using laser pulses. The antihydrogen ions are produced after two positrons captures by antiprotons flying through a positronium cloud. In this scheme to produce one single antihydrogen atom 10 x 10¹⁰ positrons have to be beamed on a nanoporous silica to yield the positronium cloud. The positrons are produced by a 9 MeV LINAC accelerating electrons into a tungsten target equipped with a mesh moderator. In this thesis we have studied and optimised the accumulation and trapping of positrons in two subsequent trapping devices.The LINAC based source providing 3 x 10⁷ positrons per second, the particles have to be accumulated. They are first accumulated into a Buffer Gas Trap (BGT), a Penning trap, divided in 3 stages, with N₂ and CO₂, leading to inelastic collisions which insure the trapping and the cooling of the positrons. The positrons are then slowed in the first stage and accumulated in the second stage for 100 ms with a trapping rate of about 1,7 x 10⁶ positrons per second, then they are transferred into the BGT's third stage. This accumulation and transfer procedure is repeated 10 times to finally provide a bunch of 1.5 x 10⁷ positrons every 1.1s (a loss happens during this stacking operation and 100 ms are added for a final radial compression using the Rotating Wall technique, the trapping efficiency is then 5%). This new bunch is then ready to be sent and re-trapped into the High Field Trap.The High Field Trap is a 5 T multi-ring Penning trap allowing to trap large amounts of charged particle for hours. We first tested this trap with electrons by trapping about 5 x 10⁹ of them. The experiments on the electrons lead to the conclusion that a better alignment of the electrodes with respect to the magnetic field still needs to be performed. However, an acceptable situation has been found allowing to re-trap the positrons with 66% efficiency. Then, accumulating the positrons bunches coming from the BGT, it was possible to accumulate 1 x 10⁹ positrons in 1100. This is a really promising result for the GBAR experiment. For the future, it is about to do 10 times more, 10 times faster to collect the desired amount of positrons each time the ELENA decelerator provides a bunch of antiprotons (every 100 s).We also studied how it could be possible to use antimatter to propel a rocket. Indeed, the energy resulting from the antimatter-matter annihilation reaction has properties defying any other propellant. In our study, we focused on the proton-antiproton annihilation reaction in a high magnetic field in order to have the annihilation products aligned with the direction of the thrust. The theoretical model is named the beam cored engine. A simulator has been developed using GEANT4 to evaluate some parameters such the intensity of the field. According to our simulation, it is then possible to get a rocket with a specific impulse of about 0.5 c/g i.e., 1.5 x 10⁷ s (with c the speed of light and g the earth's gravitational acceleration), which is outsized if it is compared to the most modern rocket (434 s for Vulcain, propelling Ariane 5). However, this model assumes the capability to produce and store a macroscopic number of antiprotons, which might be an insurmountable showstopper. Also, with this model, a large amount of gamma rays are produced and a solution to evacuate their energy has to be found.
Le but de l'expérience GBAR est de déterminer l'effet de la gravité sur des atomes d'anti-hydrogène. Les atomes d'anti-hydrogène sont créés en neutralisant des ions anti-hydrogène grâce à un faisceau laser. Un ion d'anti-hydrogène étant produit par la capture de deux positons par un antiproton volant dans un nuage de positronium. Pour cela, 10 x 10¹⁰ positons doivent être envoyés sur une cible de silicate nanoporeuse de laquelle va ressortir le nuage de positronium. Les positons sont produits par un LINAC (accélérateur linéaire), accélérant des électrons à 9 MeV sur une cible de tungsten. Ce processus fournissant 3 x 10⁷ positons par seconde, les positons doivent être accumulés. Ils sont dans un premier temps accumulés et refroidis dans un Piège à Gas Tampon. Il s'agit d'un piège de Penning divisé en 3 étages, dans lequel de faibles pressions de gas (N₂ et CO₂) on été insérés, permettant la perte d'énergie des positons incidents par collisions inélastiques. Ils sont d'abord accumulés, dans le second étage pendant 100 ms avec un taux de piégeage d'environ 1,7 x 10⁶ positons par seconde. Après quoi, ils sont transférés dans le troisième étage du piège. Cette opération de piégeage-transfert est répétée 10 fois ce qui fournit en sortie de ce premier piège 1.5 x 10⁶ positon chaque 1.1 s (il y a une perte de positons pendant cette opération de stockage et 100 ms sont ajoutées pour une compression radiale en fin de processus). Ce nouveau paquet de positons est donc prêt à être transféré dans le second piège de l'expérience.Ce second piège est un piège de Penning munit d'un électro-aimant de 5 T, permettant de piéger de grande quantités de particules chargées sur une période de plusieurs heures. Ce piège a d'abord été testé avec des électrons, en confinant des plasmas allant jusqu'à 5 x 10⁹ particules. Ces expériences nous ont amenés à comprendre qu'il y avait un problème quant à l'alignement des électrodes avec le champ magnétique. Problème qui n'a pas pu être résolu jusqu'à présent. Cependant, une situation acceptable a été trouvée, permettant ainsi de re-piéger les positons venant du premier piège avec une efficacité de 66%. Ainsi, 1 x 10⁹ positons ont pu être piégés en 1100 s. Il s'agit un résultat très prometteur pour l'expérience GBAR. A présent, il s'agit de faire 10 fois plus et 10 fois plus vite, pour accumuler assez de positons chaque fois que le décélérateur ELENA fournit un paquet d'antiprotons (chaque 100 s).Nous avons aussi étudiés la possibilité de propulser une fusée en utilisant de l'antimatière. En effet, la réaction d'annihilation matière-antimatière fournit une quantité d'énergie par unité de masse défiant toute concurrence. Nous avons particulièrement étudié le cas de la réaction proton-antiprotons en présence d'un fort champ magnétique. Le champ magnétique ayant pour but de diriger les particules chargées pour créer une force de poussée, fournissant alors un carburant quittant la fusée à une vitesse proche de celle de la lumière. Pour cette étude, un simulateur se basant sur la bibliothèque GEANT4 a été développé. D'après nos simulation, il est alors possible d'obtenir un moteur donnant une impulsion spécifique d'environ 0.5 c/g, c'est-à-dire, 1.5 x 10⁷ (avec c la vitesse de lumière et g l'accélération de pesanteur terrestre), ce qui est démesuré comparé à l'impulsion spécifique des moteurs propulsant les fusées les plus récentes (434 s pour Vulcain, propulsant Ariane 5). Cependant, ce modèle suppose la possibilité de produire et stocker des quantités macroscopiques d'antiproton, ce qui demeure une limite qui se pourrait être infranchissable. Également, ce modèle engendre une grande quantité de rayon gamma et il reste à trouver une solution pour évacuer leur énergie.
Fichier principal
Vignette du fichier
93005_NIANG_2020_archivage.pdf (22.2 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03163848 , version 1 (09-03-2021)

Identifiants

  • HAL Id : tel-03163848 , version 1

Citer

Samuel Niang. Optimisation of positron accumulation in the GBAR experiment and study of space propulsion based on antimatter. Accelerator Physics [physics.acc-ph]. Université Paris-Saclay, 2020. English. ⟨NNT : 2020UPASP075⟩. ⟨tel-03163848⟩
266 Consultations
59 Téléchargements

Partager

Gmail Facebook X LinkedIn More