Collective behaviour of zibrafish and robot groups in a constrained environment. - TEL - Thèses en ligne
Thèse Année : 2020

Collective behaviour of zibrafish and robot groups in a constrained environment.

Comportement collectif des groupes de poisson-zèbres et robots dans un environnement contraint

Résumé

Collective movement can be observed throughout the animal kingdom, particularly in fish. Yet, despite many studies on the subject, the decision-making mechanisms of these collective events remain poorly understood.In this thesis, we want to better understand collective movement by studying more precisely the decision-making process, the organisation and the cohesion of groups of social fish. Our study focuses on the zebrafish (Danio rerio), a model used in different areas of research. To highlight those behaviours, we have developed a specific constrained environment composed of two rooms connected by a corridor. Cohesion on groups of different sizes and the organisation of leadership have been examined. The collective behaviour of zebrafish in a constrained environment was then described throughout a multi-contextual stochastic model. We have also developed a robotic agent to determine the importance of aspect and behaviour in conspecific recognition. Finally, after its integration into the group, we influenced the movements of the fish group with this biomimetic and autonomous fish robot to test our hypotheses on the different rules underlying collective movements.We have achieved the following results. In a constrained environment, fish use the rooms as resting areas and frequently move from one area to another. We observed that the size of fish groups influences the structure and proportion of these transitions. Group size also changes the cohesion between individuals and their spatial distribution. We studied more precisely the decision-making process during transitions, and in particular the mechanics of leadership. We have shown that leadership is shared among all individuals in a group, with heterogeneous sharing modalities between the different groups studied. The stochastic model developed from these results correctly simulates fish group behaviour in a constrained environment, using different parameter values according to the position of the agent. We have succeeded in integrating an autonomous and biomimetic fish robot into a group of zebrafish. The use of the stochastic model to drive the robot has highlighted the importance of biomimetic behaviour in the process of recognising a conspecific. Finally, we modulated the behaviour of the zebrafish with the fish robot by inducing collective departures as well as significantly biasing the distribution of fish between the two rooms. These positive results allow us to validate the hypotheses about leadership and cohesion among social fish.
Le mouvement collectif est un phénomène observable dans tout le règne animal et notamment chez les poissons. Néanmoins, malgré un grand nombre d’études sur le sujet, les mécanismes de prises de décisions durant ces évènements collectifs sont encore mal compris.Dans cette thèse, nous avons cherché à mieux comprendre les déplacements collectifs en étudiant plus précisément les prises de décision, l’organisation et la cohésion de groupe de poissons sociaux. Nos travaux utilisent le poisson-zèbre (Danio rerio), qui est un modèle d’étude dans différents domaines de recherche. Pour analyser la cohésion au sein de groupes de différentes tailles ainsi que l’organisation du leadership, nous avons développé un environnement contraint spécifique composé de deux chambres reliées par un couloir. Le comportement collectif des poissons-zèbres en environnement contraint a ensuite été décrit dans un modèle stochastique multicontextuel. Nous avons également développé un agent robotique afin de déterminer l'importance de l’aspect et du comportement pour s'intégrer de manière autonome au sein d'un groupe de poissons. Enfin, après son intégration au groupe, nous avons utilisé ce robot poisson biomimétique et autonome pour tester nos hypothèses sur les différentes règles à l’œuvre dans les mouvements collectifs en influant sur les mouvements du groupe de poisson.Nous sommes parvenus aux résultats suivants. Dans un environnement contraint, les poissons utilisent les chambres comme zones de repos et transitent fréquemment d'une zone à l'autre. Nous avons observé que la taille des groupes de poissons a une influence sur la forme et la proportion de ces transitions. La taille des groupes modifie également la cohésion entre les individus et leur utilisation de l’espace. Nous avons étudié plus précisément les prises de décision lors des transitions, et tout particulièrement le fonctionnement du leadership. Nous avons fait apparaître que le leadership est partagé entre tous les individus d’un groupe, avec néanmoins des modalités de partage hétérogènes entre les différents groupes étudiés. Le modèle stochastique développé à partir de ces différents résultats simule correctement le comportement de groupe de poisson dans un environnement contraint, en utilisant des valeurs de paramètre différentes en fonction de la position de l'agent. Nous avons réussi à intégrer un robot poisson, autonome et biomimétique, au sein de groupe de poisson-zèbre. L'utilisation du modèle stochastique pour guider le robot a mis en évidence l'importance d'un comportement biomimétique dans le phénomène de reconnaissance d'un conspécifique. Enfin, nous avons modulé le comportement du poisson-zèbre avec le robot poisson en provoquant des départs collectifs ainsi qu'en biaisant de manière significative la répartition des poissons entre les deux salles. Ces succès nous permettent de valider les hypothèses émises sur le leadership et la cohésion chez les poissons sociaux.
Fichier principal
Vignette du fichier
CHEMTOB_Yohann_va2.pdf (9.87 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03169462 , version 1 (15-03-2021)

Identifiants

  • HAL Id : tel-03169462 , version 1

Citer

Yohann Chemtob. Collective behaviour of zibrafish and robot groups in a constrained environment.. Other [q-bio.OT]. Université Paris Cité, 2020. English. ⟨NNT : 2020UNIP7017⟩. ⟨tel-03169462⟩
155 Consultations
121 Téléchargements

Partager

More