Traitement d'images multispectrales et spatialisation des données pour la caractérisation de la matière organique des phases solides naturelles. - TEL - Thèses en ligne Access content directly
Theses Year : 2019

Characterization of organic matters in solid phase organic by multispectral image processing and data mapping

Traitement d'images multispectrales et spatialisation des données pour la caractérisation de la matière organique des phases solides naturelles.

Abstract

The evolution of the environment and climate are, currently, the focus of all attention. The impacts of the activities of present and past societies on the environment are in particular questioned in order to better anticipate the implications of our current activities on the future. Better describing past environments and their evolutions are possible thanks to the study of many natural recorders (sediments, speleothems, tree rings, corals). Thanks to them, it is possible to characterize biological-physical-chemical evolutions at di erent temporal resolutions and for di erent periods. The high resolution understood here as the su cient resolution for the study of the environment in connection with the evolution of societies constitutes the main lock of the study of these natural archives in particular because of the analytical capacity devices that can only rarely see ne inframillimetre structures. This work is built on the assumption that the use of hyperspectral sensors (VNIR, SWIR, LIF) coupled with relevant statistical methods should allow access to the spectral and therefore biological-physical-chemical contained in these natural archives at a spatial resolution of a few tens of micrometers and, therefore, to propose methods to reach the high temporal resolution (season). Besides, to obtain reliable estimates, several imaging sensors and linear spectroscopy (XRF, TRES) are used with their own characteristics (resolutions, spectral ranges, atomic/molecular interactions). These analytical methods are used for surface characterization of sediment cores. These micrometric spectral analyses are mapped to usual millimeter geochemical analyses. Optimizing the complementarity of all these data involves developing methods to overcome the di culty inherent in coupling data considered essentially dissimilar (resolutions, spatial shifts, spectral non-recovery). Thus, four methods were developed. The rst consists in combining hyperspectral and usual methods for the creation of quantitative predictive models. The second allows the spatial registration of di erent hyperspectral images at the lowest resolution. The third focuses on their merging with the highest of the resolutions. Finally, the last one focuses on deposits in sediments (laminae, oods, tephras) to add a temporal dimension to our studies. Through all this information and methods, multivariate predictive models were estimated for the study of organic matter, textural parameters and particle size distribution. The laminated and instantaneous deposits within the samples were characterized. These made it possible to estimate oods chronicles, as well as biological-physical-chemical variations at the season scale. Hyperspectral imaging coupled with data analysis methods are therefore powerful tools for the study of natural archives at ne temporal resolutions. The further development of the approaches proposed in this work will make it possible to study multiple archives to characterize evolutions at the scale of one or more watershed(s)
L'évolution de l'environnement et le climat sont, actuellement, au centre de toutes les attentions. Les impacts de l'activité des sociétés actuelles et passées sur l'environnement sont notamment questionnés pour mieux anticiper les implications de nos activités sur le futur. Mieux décrire les environnements passés et leurs évolutions sont possibles grâce à l'étude de nombreux enregistreurs naturels (sédiments, spéléothèmes, cernes, coraux). Grâce à eux, il est possible de caractériser des évolutions bio-physico-chimiques à différentes résolutions temporelles et pour différentes périodes. La haute résolution entendue ici comme la résolution su sante pour l'étude de l'environnement en lien avec l'évolution des sociétés constitue le principal verrou de l'étude de ces archives naturelles notamment en raison de la capacité analytique des appareils qui ne peuvent que rarement voir des structures fines inframillimétriques. Ce travail est bâti autour de l'hypothèse que l'utilisation de caméras hyperspectrales (VNIR, SWIR, LIF) couplée à des méthodes statistiques pertinentes doivent permettre d'accéder aux informations spectrales et donc bio-physico-chimiques contenues dans ces archives naturelles à une résolution spatiale de quelques dizaines de micromètres et, donc, de proposer des méthodes pour atteindre la haute résolution temporelle (saisonnière). De plus, a n d'avoir des estimations ables, plusieurs capteurs d'imageries et de spectroscopies linéaires (XRF, TRES) sont utilisés avec leurs propres caractéristiques (résolutions, gammes spectrales, interactions atomiques/moléculaires). Ces méthodes analytiques sont utilisées pour la caractérisation de la surface des carottes sédimentaires. Ces analyses spectrales micrométriques sont mises en correspondance avec des analyses géochimiques millimétriques usuelles. Optimiser la complémentarité de toutes ces données, implique de développer des méthodes permettant de dépasser la difficulté inhérente au couplage de données considérées par essence dissimilaire (résolutions, décalages spatiaux, non-recouvrement spectral). Ainsi, quatre méthodes ont été développées. La première consiste à associer les méthodes hyperspectrales et usuelles pour la création de modèles prédictifs quantitatifs. La seconde permet le recalage spatial des différentes images hyperspectrales à la plus basse des résolutions. La troisième s'intéresse à la fusion de ces dernières à la plus haute des résolutions. Enfin, la dernière s'intéresse aux dépôts présents dans les sédiments (lamines, crues, tephras) pour ajouter une dimension temporelle à nos études. Grâce à l'ensemble de ces informations et méthodes, des modèles prédictifs multivariés ont été estimés pour l'étude de la matière organique, des paramètres texturaux et de la distribution granulométrique. Les dépôts laminés et instantanés au sein des échantillons ont été caractérisés. Ceci a permis d'estimer des chroniques de crues, ainsi que des variations biophysico-chimiques à l'échelle de la saison. L'imagerie hyperspectrale couplée à des méthodes d'analyse des données sont donc des outils performants pour l'étude des archives naturelles à des résolutions temporelles fines. L'approfondissement des approches proposées dans ces travaux permettra d'étudier de multiples archives pour caractériser des évolutions à l'échelle d'un ou de plusieurs bassin(s) versant(s)
Fichier principal
Vignette du fichier
JACQ_2019_archivage.pdf (55.46 Mo) Télécharger le fichier
Origin : Version validated by the jury (STAR)

Dates and versions

tel-03191841 , version 1 (07-04-2021)

Identifiers

  • HAL Id : tel-03191841 , version 1

Cite

Kévin Jacq. Traitement d'images multispectrales et spatialisation des données pour la caractérisation de la matière organique des phases solides naturelles.. Chimie analytique. Université Grenoble Alpes, 2019. Français. ⟨NNT : 2019GREAA024⟩. ⟨tel-03191841⟩
193 View
27 Download

Share

Gmail Facebook X LinkedIn More