Semi-supervised dictionary learning and Semi-supervised deep neural network - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2021

Semi-supervised dictionary learning and Semi-supervised deep neural network

Apprentissage semi-supervisé de dictionnaire et de réseaux de neurones profonds

Résumé

Since the 2010's, machine learning (ML) has been one of the topics that attract a lot of attention from scientific researchers. Many ML models have been demonstrated their ability to produce excellent results in various fields such as Computer Vision, Natural Language Processing, Robotics... However, most of these models use supervised learning, which requires a massive annotation. Therefore, the objective of this thesis is to study and to propose semi-supervised learning approaches that have many advantages over supervised learning. Instead of directly applying a semi-supervised classifier on the original representation of data, we rather use models that integrate a representation learning stage before the classification stage, to better adapt to the non-linearity of the data. In the first step, we revisit tools that allow us to build our semi-supervised models. First, we present two types of model that possess representation learning in their architecture: dictionary learning and neural network, as well as the optimization methods for each type of model. Moreover, in the case of neural network, we specify the problem with adversarial examples. Then, we present the techniques that often accompany with semi-supervised learning such as variety learning and pseudo-labeling. In the second part, we work on dictionary learning. We synthesize generally three steps to build a semi-supervised model from a supervised model. Then, we propose our semi-supervised model to deal with the classification problem typically in the case of a low number of training samples (including both labelled and non-labelled samples). On the one hand, we apply the preservation of the data structure from the original space to the sparse code space (manifold learning), which is considered as regularization for sparse codes. On the other hand, we integrate a semi-supervised classifier in the sparse code space. In addition, we perform sparse coding for test samples by taking into account also the preservation of the data structure. This method provides an improvement on the accuracy rate compared to other existing methods. In the third step, we work on neural network models. We propose an approach called "manifold attack" which allows reinforcing manifold learning. This approach is inspired from adversarial learning : finding virtual points that disrupt the cost function on manifold learning (by maximizing it) while fixing the model parameters; then the model parameters are updated by minimizing this cost function while fixing these virtual points. We also provide criteria for limiting the space to which the virtual points belong and the method for initializing them. This approach provides not only an improvement on the accuracy rate but also a significant robustness to adversarial examples. Finally, we analyze the similarities and differences, as well as the advantages and disadvantages between dictionary learning and neural network models. We propose some perspectives on both two types of models. In the case of semi-supervised dictionary learning, we propose some techniques inspired by the neural network models. As for the neural network, we propose to integrate manifold attack on generative models.
Depuis les années 2010, l’apprentissage automatique (ML) est l’un des sujets qui retient beaucoup l'attention des chercheurs scientifiques. De nombreux modèles de ML ont démontré leur capacité produire d’excellent résultats dans des divers domaines comme Vision par ordinateur, Traitement automatique des langues, Robotique… Toutefois, la plupart de ces modèles emploient l’apprentissage supervisé, qui requiert d’un massive annotation. Par conséquent, l’objectif de cette thèse est d’étudier et de proposer des approches semi-supervisées qui ont plusieurs avantages par rapport à l’apprentissage supervisé. Au lieu d’appliquer directement un classificateur semi-supervisé sur la représentation originale des données, nous utilisons plutôt des types de modèle qui intègrent une phase de l’apprentissage de représentation avant de la phase de classification, pour mieux s'adapter à la non linéarité des données. Dans le premier temps, nous revisitons des outils qui permettent de construire notre modèles semi-supervisés. Tout d’abord, nous présentons deux types de modèle qui possèdent l’apprentissage de représentation dans leur architecture : l’apprentissage de dictionnaire et le réseau de neurones, ainsi que les méthodes d’optimisation pour chaque type de model, en plus, dans le cas de réseau de neurones, nous précisons le problème avec les exemples contradictoires. Ensuite, nous présentons les techniques qui accompagnent souvent avec l’apprentissage semi-supervisé comme l’apprentissage de variétés et le pseudo-étiquetage. Dans le deuxième temps, nous travaillons sur l’apprentissage de dictionnaire. Nous synthétisons en général trois étapes pour construire un modèle semi-supervisée à partir d’un modèle supervisé. Ensuite, nous proposons notre modèle semi-supervisée pour traiter le problème de classification typiquement dans le cas d’un faible nombre d’échantillons d’entrainement (y compris tous labellisés et non labellisés échantillons). D'une part, nous appliquons la préservation de la structure de données de l’espace original à l’espace de code parcimonieux (l’apprentissage de variétés), ce qui est considéré comme la régularisation pour les codes parcimonieux. D'autre part, nous intégrons un classificateur semi-supervisé dans l’espace de code parcimonieux. En outre, nous effectuons le codage parcimonieux pour les échantillons de test en prenant en compte aussi la préservation de la structure de données. Cette méthode apporte une amélioration sur le taux de précision par rapport à des méthodes existantes. Dans le troisième temps, nous travaillons sur le réseau de neurones. Nous proposons une approche qui s’appelle "manifold attack" qui permets de renforcer l’apprentissage de variétés. Cette approche est inspirée par l’apprentissage antagoniste : trouver des points virtuels qui perturbent la fonction de coût sur l’apprentissage de variétés (en la maximisant) en fixant les paramètres du modèle; ensuite, les paramètres du modèle sont mis à jour, en minimisant cette fonction de coût et en fixant les points virtuels. Nous fournissons aussi des critères pour limiter l’espace auquel les points virtuels appartiennent et la méthode pour les initialiser. Cette approche apporte non seulement une amélioration sur le taux de précision mais aussi une grande robustesse contre les exemples contradictoires. Enfin, nous analysons des similarités et des différences, ainsi que des avantages et inconvénients entre l’apprentissage de dictionnaire et le réseau de neurones. Nous proposons quelques perspectives sur ces deux types de modèle. Dans le cas de l’apprentissage de dictionnaire semi-supervisé, nous proposons quelques techniques en inspirant par le réseau de neurones. Quant au réseau de neurones, nous proposons d’intégrer "manifold attack" sur les modèles génératifs.
Fichier principal
Vignette du fichier
97180_TRAN_2021_archivage.pdf (7.12 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03206023 , version 1 (22-04-2021)

Identifiants

  • HAL Id : tel-03206023 , version 1

Citer

Khanh-Hung Tran. Semi-supervised dictionary learning and Semi-supervised deep neural network. Machine Learning [cs.LG]. Université Paris-Saclay, 2021. English. ⟨NNT : 2021UPASP014⟩. ⟨tel-03206023⟩
621 Consultations
241 Téléchargements

Partager

Gmail Facebook X LinkedIn More