Combination of cohesive elements and remeshing to handle arbitrary crack path propagation : from brittle materials to thermal fatigue analysis of solar system small bodies - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2021

Combination of cohesive elements and remeshing to handle arbitrary crack path propagation : from brittle materials to thermal fatigue analysis of solar system small bodies

Combinaison d’éléments cohésifs et remaillage pour gérer la propagation arbitraire du chemin de fissure : des matériaux fragiles à l’analyse de fatigue thermique des petits corps du système solaire

Résumé

The present PhD thesis aims at providing a better modeling of fracture phenomenon in brittle materials, with special attention focused on fracture processes taking place in astronomical bodies. One of the most challenging issues in computational fracture mechanics is the propagation of a crack through a finite element mesh for arbitrary crack paths. In this work, this problem is approached by means of an advanced remeshing technique that propagates a crack using cohesive elements through arbitrary directions (mesh-independent). The crack direction is computed using the maximal energy release rate criterion which is implemented using finite elements and the Gθ method. The effects of different numerical and physical parameters regarding the crack path and fracture energy have been investigated. Even though it has been shown that temperature cycles on airless bodies of our Solar System can cause damaging of surface materials (Thermal cracking), propagation mechanisms in the case of space objects are still poorly understood. Thermal cracking of surface rocks, in addition to the impact of micrometeorties, can eventually lead to rocks’ breakup and produce fresh regolith, the latter being the layer of unconsolidated material that covers planetary surfaces. For this reason, the present work combines a thermoelasticity model together with linear elastic fracture mechanics theory to predict fracture propagation in the presence of thermal gradients generated by diurnal temperature cycling and under conditions similar to those existing on asteroid (101955) Bennu. Using the implemented methodologies, it is found that in asteroid Bennu, cracks preferentially propagate in the North to South (N-S), in the North-East to South-West (NE-SW) and in the North-West to South-East (NW-SE) directions. Finally, thermal fatigue analysis was performed in order to estimate the crack growth rate.Aforementioned methodologies have been implemented in Cimlib, a C++ in-house finite element library developed at CEMEF. Inside Cimlib, a methodology allowing two-dimensional crack propagation through arbitrary directions with the option of handling multiple cracks in the domain and inside a parallel environment was developed. Regarding three-dimensional scenario, a first approach where a crack front was propagated through an arbitrary direction was achieved. Concerning numerical modeling of crack propagation, the developed framework opens new possibilities for various applications such as composites cracking at the meso-scale.
La présente thèse de doctorat a pour objectif d’améliorer la modélisation du phénomène de rupture dans les matériaux fragiles. Elle porte une attention particulière aux mécanismes de rupture des objets célestes. L’un des problèmes posant le plus de défis aux scientifiques spécialisés dans l’étude de la mécanique de la rupture est la propagation d’une fissure dans un maillage éléments finis, et ce pour des chemins arbitraires. Dans cette étude, ce problème est abordé en utilisant une technique de remaillage avancée utilisant des éléments finis cohésifs permettant la propagation de fissures suivant des directions arbitraires et indépendantes du maillage. La direction de la fissure est calculée suivant le critère du taux de restitution d’énergie maximal, implémentée à l’aide d’un modèle éléments finis et de la méthode Gθ. Les effets de différents paramètres numériques et physiques relatifs à la fissure ou à l’énergie libérée lors de la rupture sont investigués.Bien que différentes preuves de fissures et/ou fragments à la surface de corps célestes de notre système solaire induits par des variations cycliques de la température ont été détaillées, la compréhension de ces mécanismes de propagation dans des objets célestes reste très parcellaire. La fracturation thermique de roches en surface associée à l’impact de micro-météorites peutéventuellement conduire à la rupture complète de fragments de matière et à la production de régolithes. Cette dernière est définie comme la couche de matériau non consolidée qui recouvre la surface des planètes. Afin de comprendre ces mécanismes, l’étude s’attarde sur un exemple précis, celui de l’astéroïde (101955) Bennu. Pour ce faire, elle utilise un modèle thermoélastique couplé avec un modèle linéaire élastique de mécanique de la rupture permettant de considérer les variations cycliques de température liées aux alternances jour/nuit. En utilisant cette méthodologie, il a été observé que les fissures se propagent préférentiellement dans les directions : Nord vers Sud, Nord-Est vers Sud-Ouest et Nord-Ouest vers Sud-Est. Finalement, une analyse de fatigue est effectuée afin d’estimer la vitesse de croissance de la fissure.Les méthodes détaillées précédemment ont été implémentées dans Cimlib, une librairie C++ dévelopée au CEMEF. Au sein de cette librairie, une méthode permettant la propagation d’une ou plusieurs fissures, suivant des directions arbitraires, en 2D et au sein d’un environnement de calcul en parallèle est à présent disponible. Concernant l’extension de cette méthode à des problèmes 3D, une première approche a été mise au point. Elle permet de propager un front de fissure suivant une direction arbitaire. La structure développée permet d’ouvrir de nouvelles possibilités pour de nombreuses applications, telles que l’étude de la rupture de matériaux composites à l’échelle mesoscopique.
Fichier principal
Vignette du fichier
2021COAZ4047.pdf (88.55 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03352206 , version 1 (23-09-2021)

Identifiants

  • HAL Id : tel-03352206 , version 1

Citer

Diego Alejandro Uribe Suarez. Combination of cohesive elements and remeshing to handle arbitrary crack path propagation : from brittle materials to thermal fatigue analysis of solar system small bodies. Materials and structures in mechanics [physics.class-ph]. Université Côte d'Azur, 2021. English. ⟨NNT : 2021COAZ4047⟩. ⟨tel-03352206⟩
123 Consultations
5 Téléchargements

Partager

Gmail Facebook X LinkedIn More