Thèse Année : 2014

Online machine learning methods for visual tracking

Algorithmes d'apprentissage en ligne pour le suivi visuel

Résumé

We study the challenging problem of tracking an arbitrary object in video sequences with no prior knowledge other than a template annotated in the first frame. To tackle this problem, we build a robust tracking system consisting of the following components. First, for image region representation, we propose some improvements to the region covariance descriptor. Characteristics of a specific object are taken into consideration, before constructing the covariance descriptor. Second, for building the object appearance model, we propose to combine the merits of both generative models and discriminative models by organizing them in a detection cascade. Specifically, generative models are deployed in the early layers for eliminating most easy candidates whereas discriminative models are in the later layers for distinguishing the object from a few similar "distracters". The Partial Least Squares Discriminant Analysis (PLS-DA) is employed for building the discriminative object appearance models. Third, for updating the generative models, we propose a weakly-supervised model updating method, which is based on cluster analysis using the mean-shift gradient density estimation procedure. Fourth, a novel online PLS-DA learning algorithm is developed for incrementally updating the discriminative models. The final tracking system that integrates all these building blocks exhibits good robustness for most challenges in visual tracking. Comparing results conducted in challenging video sequences showed that the proposed tracking system performs favorably with respect to a number of state-of-the-art methods
Nous étudions le problème de suivi de cible dans une séquence vidéo sans aucune connaissance préalable autre qu'une référence annotée dans la première image. Pour résoudre ce problème, nous proposons une nouvelle méthode de suivi temps-réel se basant sur à la fois une représentation originale de l’objet à suivre (descripteur) et sur un algorithme adaptatif capable de suivre la cible même dans les conditions les plus difficiles comme le cas où la cible disparaît et réapparait dans le scène (ré-identification). Tout d'abord, pour la représentation d’une région de l’image à suivre dans le temps, nous proposons des améliorations au descripteur de covariance. Ce nouveau descripteur est capable d’extraire des caractéristiques spécifiques à la cible, tout en ayant la capacité à s’adapter aux variations de l’apparence de la cible. Ensuite, l’étape algorithmique consiste à mettre en cascade des modèles génératifs et des modèles discriminatoires afin d’exploiter conjointement leurs capacités à distinguer la cible des autres objets présents dans la scène. Les modèles génératifs sont déployés dans les premières couches afin d’éliminer les candidats les plus faciles alors que les modèles discriminatoires sont déployés dans les couches suivantes afin de distinguer la cibles des autres objets qui lui sont très similaires. L’analyse discriminante des moindres carrés partiels (AD-MCP) est employée pour la construction des modèles discriminatoires. Enfin, un nouvel algorithme d'apprentissage en ligne AD-MCP a été proposé pour la mise à jour incrémentale des modèles discriminatoires
Fichier principal
Vignette du fichier
Lei_Qin_2014TROY0017.pdf (11.08 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03357061 , version 1 (28-09-2021)

Identifiants

  • HAL Id : tel-03357061 , version 1

Citer

Lei Qin. Online machine learning methods for visual tracking. Operations Research [math.OC]. Université de Technologie de Troyes, 2014. English. ⟨NNT : 2014TROY0017⟩. ⟨tel-03357061⟩
104 Consultations
101 Téléchargements

Partager

More