Monotone finite difference discretization of degenerate elliptic partial differential equations using Voronoi's first reduction - TEL - Thèses en ligne
Thèse Année : 2021

Monotone finite difference discretization of degenerate elliptic partial differential equations using Voronoi's first reduction

Discrétisation aux différences finies monotones d'équations aux dérivées partielles dégénérées elliptiques en utilisant la première réduction de Voronoi

Résumé

In this thesis, we show how Voronoi's first reduction may be used in order to build monotone finite difference discretizations on Cartesian grids of some degenerate elliptic differential operators. We recommend a specific, second-order consistent discretization of two- and three-dimensional linear anisotropic differential operators involving both a first- and a second-order term. We prove the quasi-optimality of this construction. We study some properties on the regularity and the compactness of Voronoi's first reduction in dimension four. We design a method allowing to efficiently approximate Randers distances and associated optimal transport distances, using a large deviations principle. We discretize the Pucci and Monge-Ampère operators. The resulting discretizations are written as maxima of discrete operators; in dimension two, we show that these maxima admit closed-form formulae, reducing the numerical cost of their evaluation. We study the well-posedness, and in some cases the convergence, of a numerical scheme for the second boundary value problem for the Monge-Ampère equation. We present a numerical application to the far-field refractor problem in nonimaging optics.
Dans cette thèse, nous montrons comment la première réduction de Voronoi permet de construire des discrétisations aux différences finies monotones sur grilles cartésiennes de certains opérateurs différentiels dégénérés elliptiques. Nous recommandons une discrétisation particulière, consistante à l'ordre deux, d'opérateurs différentiels linéaires anisotropes en dimensions deux et trois comprenant à la fois des termes d'ordres un et deux. Nous prouvons la quasi-optimalité de cette construction. Nous étudions certaines propriétés de régularité et de compacité de la première réduction de Voronoi en dimension quatre. Nous concevons une méthode permettant d'approcher efficacement des distances de Randers et des distances de transport optimal associées, en utilisant un principe de grandes déviations. Nous discrétisons les opérateurs de Pucci et de Monge-Ampère. Les discrétisations obtenues s'écrivent comme des maxima d'opérateurs discrets ; en dimension deux, nous montrons que ces maxima admettent des expressions de forme fermée, ce qui réduit le coût numérique de leur évaluation. Nous étudions le caractère bien posé et, dans certains cas, la convergence d'un schéma numérique pour le second problème aux limites pour l'équation de Monge-Ampère. Nous présentons une application numérique au problème du réfracteur en champ lointain en optique non imageante.
Fichier principal
Vignette du fichier
102054_BONNET_2021_archivage.pdf (6.93 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-03485421 , version 1 (17-12-2021)

Identifiants

  • HAL Id : tel-03485421 , version 1

Citer

Guillaume Bonnet. Monotone finite difference discretization of degenerate elliptic partial differential equations using Voronoi's first reduction. Numerical Analysis [math.NA]. Université Paris-Saclay, 2021. English. ⟨NNT : 2021UPASM042⟩. ⟨tel-03485421⟩
264 Consultations
184 Téléchargements

Partager

More