Methodology for construction of adaptive models for the simulation of energy consumption in buildings
Méthodologie de construction de modèles adaptatifs pour la simulation énergétique des bâtiments
Résumé
Predictive modeling of energy consumption in buildings is essential for intelligent control and efficient planning of energy networks. One way to perform predictive modeling is through machine learning approaches. Alongside their good performance, these approaches are time efficient and facilitates the integration of buildings into smart environments. However, accurate machine learning models rely heavily on collecting relevant building operational data in a sufficient amount, notably when deep learning is used. In the field of buildings energy, historical data are not available for training, such is the case in newly built or newly renovated buildings. Moreover, it is common to verify the energy efficiency of buildings before construction or renovation. For such cases, only a contextual description about the future building and its design is available. The goal of this dissertation is to address the predictive modeling tasks of building energy consumption when no historical data are available for the given target building. To that end, existing data collected from multiple different source buildings are leveraged. This is increasingly relevant with the growth of open data initiatives in various sectors, namely building energy. The main idea is to transfer knowledge across building models. There is little research at the intersection of building energy modeling and knowledge transfer. An important challenge arises when dealing with multi-source data, since large domain shift may exist between different sources and also between each source and the target. As a contribution, a two-fold query-adaptive methodology is developed for cross-building predictive modeling. The first process recommends relevant training data to a target building solely by using a minimal contextual description on it (metadata). Contextual descriptions are provided as user queries. To enable a task-specific recommendation, a deep similarity learning framework is used. The second process trains multiple predictive models based on recommended training data. These models are combined together using an ensemble learning framework to ensure a robust performance. The implementation of the proposed methodology is based on microservices. Logically independent workflows are modeled as microservices with single purposes and separate data sources. Building metadata and time series data collected from multiple sources are integrated into an unified ontology-based view. Experimental evaluation of the predictive model factory validates the effectiveness and the applicability for the use case of building energy modeling. Moreover, because of its generic design, the methodology for query-adaptive cross-domain predictive modeling can be re-used for a diverse range of use cases in different fields.
La modélisation prédictive au sein des bâtiments est essentielle pour le contrôle intelligent, la coordination et la planification efficaces des réseaux d'énergie. L'un des moyens de modélisation prédictive utilise l'apprentissage automatique. En plus de leur bonne performance, ces approches sont rapides et permettent une intégration facile du bâtiment dans des systèmes intelligents. Cependant, un modèle d'apprentissage précis s'appuie essentiellement sur la disponibilité des données historiques en quantité suffisante, notamment quand l'apprentissage profond est utilisé. Dans le domaine d'énergie des bâtiments, les données historiques ne sont pas disponibles pour l'entraînement, notamment dans le cas des bâtiments nouvellement construits et nouvellement rénovés. En outre, il est fréquent d'évaluer l'efficacité énergétiques des bâtiments avant leur construction ou rénovation. Dans de tels cas, on dispose uniquement d'une description contextuelle du bâtiment futur et de sa conception. Cette thèse s'intéresse à la tâche de modélisation prédictive de la consommation énergétique des bâtiments quand aucune donnée historique n'est disponible. Pour cela, des données collectées à partir de plusieurs différents bâtiments sources sont exploitées. Ceci est de plus en plus pertinent compte tenu la croissance des initiatives de données ouvertes dans plusieurs secteurs, dont celui de l'énergie. Ainsi, l'idée est de transférer la connaissance entre les modèles de bâtiments. Peu de travaux de recherche sont menés à l'intersection des domaines de modélisation de l'énergie des bâtiments et le transfert d'apprentissage. Le traitement de données multi-sources constitue un défi majeur, vu l'écart de concept qui peut exister entre les différents sources et aussi entre chaque source et cible. Comme contribution, on propose une méthodologie de modélisation prédictive adaptative aux requêtes des utilisateurs. Le premier processus est responsable de la recommandation de données d'apprentissage pertinentes vis-à-vis un bâtiment cible, seulement en utilisant une description contextuelle minimale sur ce dernier (métadonnées). La description contextuelle est modélisée en tant que requête utilisateur. Pour permettre des recommandations spécifiques à la tâche cible, notre approche se base sur l'apprentissage profond de métrique de similarité. Le second processus est responsable de l'entraînement de plusieurs modèles prédictifs sur les données d'apprentissage recommandées par le processus précédent. Ces modèles sont combinés avec une méthode ensembliste pour assurer une bonne performance. L'implémentation de la méthodologie est basée sur les microservices. Les processus indépendants sont, par conséquent, modélisés en tant que microservices à but unique et à source de données séparée. Les métadonnées des bâtiments et leurs séries temporelles recueillies auprès de nombreuses sources sont intégrées au sein d'une vue unifiée et basée sur des ontologies. Les évaluations expérimentales de la méthodologie valident son efficacité et son applicabilité à la tâche de modélisation énergétique des bâtiments. Par ailleurs, vu le caractère générique de sa conception, la méthodologie peut être réutilisée dans d'autres applications dans divers secteurs.
Origine | Version validée par le jury (STAR) |
---|