Développement d’une approche numérique et expérimentale par la mesure VLD pour la propagation acoustique mutimodale en conduit avec écoulement - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2021

Development of a numerical and experimental approach by LDV measurement for multimodal acoustic propagation in ducts with flow

Développement d’une approche numérique et expérimentale par la mesure VLD pour la propagation acoustique mutimodale en conduit avec écoulement

Mohamed Amine Benamar
  • Fonction : Auteur
  • PersonId : 1143478
  • IdRef : 263035522

Résumé

Laser Doppler Velocimetry (LDV) is a non-intrusive measurement of particle velocity classically used in fluid mechanics. The acoustic velocity is a very important quantity in acoustics for the characterization of acoustic propagation fields, which is essential for the understanding of certain propagation phenomena in near walls or for complex geometries. The DUCAT bench installed in the laboratory of the Acoustics and Vibration team of the University of Technology of Compiègne aimed at characterizing the acoustic performances of various acoustic absorption systems such as SDOF or metallic porous materials for aeronautical uses through the measurement of the acoustic velocity and pressure through two automated probes containing a hot wire sensor as well as a microphone with ogive. The objective of this thesis is to allow the measurement of acoustic velocity in multimodal propagation and in the presence of flow using the VLD. The signal measured by the VLD is randomly sampled and has a fairly large background noise due to the presence of flow in the duct. The complex nature of the measured signal requires special signal processing methods to extract the acoustic velocity that is important to us. The first part of this thesis presents a benchmark of the different methods available in the literature and their validity for the current experimental conditions of the DUCAT bench. A simulation of the measured VLD signal is developed as a reference to validate the methods, whether they are spectral or temporal. The weighted least squares method is finally selected and adapted following this study for the estimation of the various acoustic parameters from the raw signal. The second part concerns the presentation of the numerical tools used or developed for the simulation of the acoustic propagation in infinite ducts. The main numerical tool is an aeroacoustic finite element code developed in the lab based on Galbrun’s equations coupled to a virtual absorbing layer called PML (Perfect Matched Layer). Due to the presence of the PML, the numerical solution of the inverse problem becomes complicated, which led us to develop a code for solving nonlinear eigenvalue problems based on the Integral Contour method. The third part of this work presents the different components of the modified version of the bench as well as the characteristics of these different components. The bench allows the experimentation of multimodal acoustic propagation (up to 5000 Hz) in the presence of a suction/expiration flow that can reach a speed of Mach 0.25. The fourth and last part, presents a protocol of experimental numerical validation of all the tools presented and developed. The test/calculation comparisons are presented for a multimodal propagation in a straight duct at first. The results allow to conclude on the efficiency of the measurement and signal processing system with a relative error lower than 1 dB. The same protocol is then used for the experimental study of the acoustic trapped modes in the case of a cylindrical duct with an abrupt change of section.
La Vélocimétrie Laser à effet Doppler (VLD) est un moyen de mesure non intrusif de la vitesse particulaire classiquement utilisé en mécanique des fluides. La vitesse acoustique est une grandeur très importante en acoustique car elle permet de caractériser les champs de propagation acoustique indispensable pour la compréhension de certains phénomènes de propagation en proche paroi ou pour des géométries complexes. Le banc DUCAT installé au laboratoire de l’équipe acoustique et vibration de l’Université de Technologie de Compiègne avait pour but de caractériser les performances acoustiques de différents systèmes d’absorption acoustique tel que les SDOF ou les poreux métalliques pour des utilisations aéronautiques à travers la mesure amont/aval de la vitesse et la pression acoustiques à travers deux sondes automatisées contenants un capteur à fil chaud ainsi qu’un microphone avec ogive. L’objectif de cette thèse est de permettre la mesure de la vitesse acoustique en propagation multimodale et en présence d’écoulement en utilisant la VLD. Le signal mesuré par la VLD est échantillonné aléatoirement et présente un bruit de fond assez important dû à la présence de l’écoulement dans le conduit. La nature complexe du signal mesuré demande des méthodes de traitement de signal particulières pour pouvoir en extraire la vitesse acoustique qui nous importe. La première partie de cette thèse, présente un benchmark des différentes méthodes présentes dans la littérature ainsi que leur validité pour les conditions expérimentales actuelles du banc DUCAT. Une simulation du signal VLD mesuré est développé en guise de référence de validation des méthodes qu’elles soient spectrales ou temporelles. La méthode des moindres carrés pondérés est finalement sélectionnée et adaptée suite à cette étude pour l’estimation des différents paramètres acoustiques à partir du signal brut. La deuxième partie concerne la présentation des outils numériques utilisés ou développés pour la simulation de la propagation acoustique dans les conduits infinis. L’outil numérique est un code éléments finis aéroacoustique basé sur les équations de Galbrun couplées à une couche absorbante virtuelle dite PML (Perfect Matched Layer). En raison de la présence de la PML, la résolution numérique du problème inverse devient compliquée et un code de résolution des problèmes aux valeurs propres non linéaires basé sur la méthode du Contour Intégral a dû être développé. La troisième partie de ce travail présente les différents composants du banc expérimental. Le banc permet la propagation acoustique multimodale (jusqu’à 5000 Hz) en présence d’un écoulement en aspiration/expiration pouvant atteindre une vitesse de Mach 0.25. La quatrième partie présente une comparaison numérique et expérimentale des outils présentés et développés durant la thèse. Une première comparaison pour une propagation multimodale dans un conduit droit permet de conclure sur l’efficacité du système de mesure et de traitement de signal avec une erreur relative inférieure à 1 dB. Une seconde comparaison a été réalisée pour l’étude des modes piégés acoustiques dans le cas d’un conduit cylindrique avec changement brusque de section.
Fichier principal
Vignette du fichier
These_UTC_Mohamed_Amine_Benamar.pdf (17.96 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03698478 , version 1 (18-06-2022)

Identifiants

  • HAL Id : tel-03698478 , version 1

Citer

Mohamed Amine Benamar. Développement d’une approche numérique et expérimentale par la mesure VLD pour la propagation acoustique mutimodale en conduit avec écoulement. Acoustique [physics.class-ph]. Université de Technologie de Compiègne, 2021. Français. ⟨NNT : 2021COMP2624⟩. ⟨tel-03698478⟩
99 Consultations
18 Téléchargements

Partager

Gmail Facebook X LinkedIn More