Characterizing methane (CH4) and carbon dioxide (CO2) emissions through mobile platforms from local to national scale
Caractériser les émissions de CH4 et de CO2 via des plateformes mobiles de l'échelle locale à nationale
Résumé
Methane and carbon dioxide are the most abundant human-induced greenhouse gases (GHG) in the atmosphere. Their increasing atmospheric concentration is the main driver of climate change. Therefore, it is critical to monitor the evolution of their sources and sinks. Accurate characterization and quantification of their territorial emissions from different sectors are required in order to determine and manage efficient mitigation actions and policies. The main goal of this Ph.D. is to improve the characterization of CH4 and CO2 sectoral emissions from local to national scale through the development of mobile observation strategies including platforms such as car, drone and aircraft.This study consists of three parts. The first part aims at verifying a national CH4 inventory with a replicable method. I focus on surveying and quantifying significant methane emitters that represent 28% of national (Cyprus) methane emissions. These are essentially landfills and cattle farm areas. The approach is based on car-based mobile measurements and Gaussian plume dispersion modelling. The calculated methane emissions from landfills and enteric fermentation of cattle were about 160% and 40% larger, respectively, than the bottom-up sectoral estimates used in the national inventory. These mobile surveys show that an ensemble of in situ measurements targeting representative methane emission hotspots with consistent temporal and spatial coverage can largely improve national bottom-up emission inventories.The second part focuses on methods to quantify CH4 emissions for the oil and gas industry. It compares ten state-of-the-art commercial methane quantification systems through a series of controlled release experiments at an inert compressor station. The controlled releases covered a range of situations including various leak rates and wind conditions. The results indicated that ‘source-level' systems (close to single leak) generally underestimate emissions, while ‘site-level' systems (integrating emissions for the site) relying on atmospheric dispersion slightly overestimate emission rates. The analysis of this part highlights that unmanned aerial vehicles (UAV) have the potential to bridge the gap between ground-based and airborne observations but are strongly wind sensitive.The last part focused on the development of UAV GHG measurements. I have developed and validated a novel portable UAV-CO2 sensor system that is lightweight but remains sufficiently precise. Through a careful sensor characterization, correction and calibration procedure, we reach an in-flight precision of ± 2 ppm (1σ) at 1 Hz and ± 1 ppm (1σ) at 1 min. This system is relatively inexpensive and easy to reproduce, and has the potential to perform a wide range of field applications, such as urban and point source emissions monitoring.In short, this Ph.D. makes a step forward for future reconciliation of GHG emission estimates based on various observation systems and different approaches, and seeks methods that are easily duplicated and applicable to other regions and emission sectors. While mobile approaches presented here clearly represent important monitoring options, significant challenges remain in current capacity to estimate routinely anthropogenic GHG emission trajectories with sufficient precision and at large scale.
Le méthane et le dioxyde de carbone sont les gaz à effet de serre (GES) d'origine humaine les plus abondants dans l'atmosphère. Leur concentration croissante dans l'atmosphère est la principal cause du changement climatique. Il est donc essentiel de surveiller l'évolution de leurs sources et de leurs puits. Une caractérisation et une quantification précises de leurs émissions territoriales provenant de différents secteurs sont nécessaires pour déterminer et gérer des actions et des politiques d'atténuation efficaces. L'objectif principal de cette thèse est d'améliorer la caractérisation des émissions de CH4 et de CO2 secteur par secteur, de l'échelle locale à l'échelle nationale, via le développement de stratégies d'observation mobiles exploitant des plateformes telles que la voiture, le drone et l'avion.Cette étude comporte trois parties. La première partie vise à vérifier un inventaire national de CH4 avec une méthode reproductible, en prenant pour base Chypre. Je me concentre sur la quantification des émetteurs de méthane significatifs (décharges et zones d'élevage) qui représentent cumulativement 28% des émissions nationales de méthane. L'approche se base sur des mesures mobiles en voiture et une modélisation par dispersion gaussienne. Les émissions de méthane calculées provenant des décharges et de la fermentation entérique du bétail étaient environ 160% et 40% plus importantes, respectivement, que les estimations sectorielles ascendantes utilisées dans l'inventaire national. Ces enquêtes mobiles montrent qu'un ensemble de mesures in situ ciblant des points chauds représentatifs des émissions de méthane avec une couverture temporelle et spatiale cohérente peut largement améliorer les inventaires nationaux ascendants des émissions.La deuxième partie se concentre sur les méthodes de quantification des émissions de CH4 pour l'industrie pétrolière et gazière. Elle compare dix systèmes commerciaux de pointe de quantification du méthane par le biais d'une série d'expériences de rejet contrôlé dans une station de compression inerte. Les rejets contrôlés couvraient une série de situations, y compris différents taux de fuite et conditions de vent. Les résultats indiquent que les systèmes "source-level" (proches d'une fuite unique) sous-estiment généralement les émissions, tandis que les systèmes "site-level" (intégrant les émissions pour le site) reposant sur la dispersion atmosphérique surestiment légèrement les taux d'émission. L'analyse de cette partie souligne que les drones (UAV) ont le potentiel de combler le fossé entre les observations au sol et les observations aériennes, mais sont fortement sensibles au vent.La dernière partie était consacrée au développement des mesures de GES par drone. J'ai développé et validé un nouveau système de capteur portable UAV-CO2 qui est léger mais reste suffisamment précis. Grâce à une procédure minutieuse de caractérisation, de correction et de calibration du capteur, nous atteignons une précision en vol de ± 2 ppm (1σ) à 1 Hz et de ± 1 ppm (1σ) à 1 min. Ce système est relativement peu coûteux et facile à reproduire, et a le potentiel pour réaliser une large gamme d'applications sur le terrain, telles que la surveillance des émissions urbaines et des sources ponctuelles.En bref, ce doctorat fait un pas en avant pour la réconciliation future des estimations d'émissions de GES basées sur divers systèmes d'observation et différentes approches, et recherche des méthodes facilement duplicables et applicables à d'autres régions et secteurs d'émission. Alors que les approches mobiles présentées ici représentent clairement des options importantes pour le suivi des émissions, des défis significatifs demeurent dans la capacité actuelle d'estimer régulièrement les trajectoires d'émissions de GES anthropiques avec une précision suffisante et à grande échelle.
Origine | Version validée par le jury (STAR) |
---|