Étude du comportement thermomécanique de poutres mixtes acier-bois en situation d’incendie - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2022

Study of the thermomechanical behaviour of steel-timber composite beams in fire situation

Étude du comportement thermomécanique de poutres mixtes acier-bois en situation d’incendie

Résumé

Timber-steel hybridization has great potential, because steel and timber component can reinforce each other, timber can be used to protect steel from fire, and the non-combustibility of steel can be used in an advantageous way. However, this form of hybridization is not widespread despite recent developments in the use of timber for multi-story buildings. Therefore, it is proposed to study composite beams made from timber and steel combined in such a way that the best possible performances are achieved, in normal and fire situations. Firstly, behavior of steel and timber is described in normal and fire situations. A description of wood combustion is proposed to better understand what underlies the temperature dependence of its properties. A focus is made on the mass transfer that occur into timber as it burns. Then, the timber-steel hybridization is addressed through an overview. Afterward, a literature review is made on a specific configuration type, which is assembled by inserting timber beams between the flanges of a hot-rolled “I” profile, while ensuring that this profile is protected from fire by timber. The description of the elastic behavior of studied beams in normal situation is achieved using the gamma method. Bending tests on hybrid beams and their components corroborate this analytical model, but an unexpected composite behavior is observed when steel yielding begins. Thus, a significant strength gain results from the combination of timber and steel. We manage to simulate this behavior by increasing the yield point of the modeled steel compared to the measured value, as well as the tensile strength of timber. Then, fire tests on unloaded specimens are performed. On this occasion, we confirm that correct temperature measurements into timber require orienting thermocouples parallel to isotherms. Many configurations are compared, which allows to understand in detail the effectiveness of the fire protection provided by wood to steel profiles. Mass transfers that occur into timber appear to have a significant effect on temperatures measured on protected steel profiles. The comparison of measured and simulated temperatures allows to highlight the importance of tightness of assembly joints during exposure to fire. Wood combustion and steel temperatures are observed after the end of the fire exposure, and the behavior of hollow configurations is contrasted with that of the timber filled configurations. Finally, fire tests on mechanically loaded beams show that a steel profile protected using 45 mm thick timber components can resist fire for 81 min. Thus, R60 is exceeded with relatively thin protection. Results show that the loading has an impact on steel temperatures, because of an opening of the assembly joints. Numerical simulations show that timber gives fire resistance of the composite beam both thermally and mechanically, by protecting the steel profile, but also by relieving its load. This work shows the effectiveness of steel-timber composite beams, in normal and fire situations, and contributes to the understanding of their behavior. However, proposals for improvement and new challenges are formulated, opening prospects for the study and use of these composite beams.
La mixité acier-bois présente un fort potentiel de développement : les composants en bois et en acier peuvent se renforcer mutuellement ; le bois, par son caractère isolant, peut être utilisé pour protéger l'acier du feu ; l'acier apporte son caractère incombustible. Cette forme de mixité est pourtant peu répandue malgré le récent essor du bois dans la construction de bâtiments multiétagés, à cause du manque de références scientifiques et techniques sur le sujet. On propose alors d'étudier des poutres mixtes pour lesquelles l'acier et le bois sont associés de manière à obtenir des performances les meilleures possibles, en situations normale et d'incendie. On décrit d'abord le comportement des matériaux acier et bois, à froid et en situation d'incendie. Une description de la combustion du bois est proposée pour mieux comprendre ce qui sous-tend l'évolution de ses propriétés avec la température. Un intérêt particulier est porté sur les transferts hydriques qui se produisent dans le bois lorsqu'il brûle. On examine ensuite la question de la mixité acier-bois à travers un aperçu global. Puis on passe en revue les travaux portant sur un certain type de configuration, qui consiste à insérer des poutres en bois entre les semelles d'un profilé en I laminé à chaud, tout en faisant en sorte que ce profilé soit protégé du feu par le bois. La description du comportement élastique à froid des poutres étudiées est réalisée par l'utilisation de la méthode gamma. La réalisation d'essais de flexion sur des poutres mixtes et leurs constituants permet de confirmer ce modèle analytique, mais un effet composite non-anticipé est observé dès lors que l'acier commence à se plastifier. Un gain de résistance significatif est alors permis par l'association du bois et de l'acier. On parvient à simuler ce comportement en augmentant la limite d'élasticité de l'acier modélisé par rapport à la valeur mesurée, ainsi que la résistance du bois en traction longitudinale. Des essais thermiques sur des éprouvettes acier-bois non chargées sont ensuite réalisés. On confirme à cette occasion que la mesure correcte des températures dans le bois nécessite d'orienter les thermocouples parallèlement aux isothermes. De nombreuses configurations sont comparées, ce qui permet d'appréhender finement l'efficacité de la protection au feu des profilés métalliques apportée par le bois. Les transferts de masse qui se produisent dans le bois se révèlent avoir un effet sensible sur la température des profilés métalliques protégés. La comparaison des températures mesurées et simulées permet de mettre en évidence l'importance de l'étanchéité des joints d'assemblage pendant l'exposition au feu. La combustion du bois et la température de l'acier sont observées après la fin de l'exposition au feu, on oppose alors le comportement des configurations creuses à celui des configurations pleines. Finalement, des essais au feu sur des poutres chargées mécaniquement montrent qu'un profilé protégé par une épaisseur de bois de 45 mm peut résister au feu pendant 81 min. On met en évidence un effet du chargement sur la température du profilé métallique par l'intermédiaire d'une ouverture des joints d'assemblage. La simulation numérique montre que le bois contribue à la résistance au feu de la poutre mixte non seulement en protégeant thermiquement l'acier, mais également en reprenant une partie des charges. Ces travaux montrent l'efficacité des poutres mixtes acier-bois, en situation normale et sous incendie, et contribuent à la compréhension de leur comportement. Ils permettent de formuler des propositions d'amélioration et d'identifier de nouvelles problématiques ouvrant des perspectives pour l'étude et l'utilisation de ces poutres mixtes.
Fichier principal
Vignette du fichier
TH_2022ECDL0005.pdf (32.19 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-03982408 , version 1 (10-02-2023)

Identifiants

  • HAL Id : tel-03982408 , version 1

Citer

Antoine Béreyziat. Étude du comportement thermomécanique de poutres mixtes acier-bois en situation d’incendie. Autre. Ecole Centrale de Lyon, 2022. Français. ⟨NNT : 2022ECDL0005⟩. ⟨tel-03982408⟩
195 Consultations
4 Téléchargements

Partager

Gmail Facebook X LinkedIn More