Instabilités hydrodynamiques dans l'effondrement du cœur d'une étoile en rotation avant son explosion en supernova - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Hydrodynamical instabilities in the collapsing core of a rotating star before its supernova explosion

Instabilités hydrodynamiques dans l'effondrement du cœur d'une étoile en rotation avant son explosion en supernova

Anne-Cécile Buellet
  • Fonction : Auteur
  • PersonId : 1262728
  • IdRef : 270517367

Résumé

At the end of their lives, massive stars explode and produce a phenomenon called a supernova. It begins when the fusion reactions in the core of the star run out of fuel. The core of the star collapses until it becomes so dense that the nuclear forces counteract the gravity, creating a rebound. The inner core then gives rise to a compact star, a protoneutron star (PNS) with a radius of ~50 km at its formation.The shock wave generated by this bounce then propagates towards the collapsing outer layers. However, the energy of this shock is not enough for it to reach the star's surface directly. It becomes stationary at a radius of ~ 200 km. The explosion of the star into a supernova depends on the ability of this shock to be revived and reach the star's surface. The interaction between matter and neutrinos plays an essential role in these dynamics. Neutrinos emitted by the cooling PNS can be absorbed by the dense matter beneath the shock. The resulting heating induces a swelling of the shock.The development of hydrodynamic instabilities affects the absorption efficiency of neutrinos under the stationary shock wave. Among these instabilities, convection is favoured by the establishment of a negative entropy gradient. Convective motions prolong the exposure of matter to the neutrino flux.On the other hand, the stationary accretion shock instability (SASI) is due to a cycle between acoustic waves and the advection of entropy and vorticity perturbations, generated by the shock deformation. By its spiral geometry, it allows a local increase of the density which increases the probability of interaction of neutrinos with matter.In this thesis, we present a linear analysis (analytical and numerical) of these two instabilities, allowing us to establish the parameter domains for which each instability dominates the flow dynamics. We also investigate the impact of rotation on these domains. The effect of rotation on these instabilities is still poorly known and is an open question in the supernova community.In the absence of rotation, the intensity of neutrino heating, evaluated through χ ∼ 3 parameter comparing the flotation time and the advection time, allows the distinction between the SASI domain and the convective domain. We demonstrate the shortcomings of this criterion and suggest another, more general, criterion to determine the convective growth threshold. Contrary to the results found by Foglizzo et al. (2006}, we show that the transition from SASI to convection does not occur for a threshold value of χ ∼ 3 but on a heating domain such that χ ∈ [3, 4]. We then present an analysis of the influence of rotation on the linear growth of these instabilities. For slow rotations, the instability criterion based on the χ parameter decreases. If the rotation exceeds 10% of the Keplerian rotation at the PNS surface, then mixed SASI/convection/rotation modes appear at large scales. For strong rotations (>30% of the Keplerian rotation at the PNS surface), the influence of the χ parameter on both the growth rate and the frequency of the most unstable mode becomes negligible. This weak dependency indicates that convection no longer plays a role in the dominant instability, which is of rotational origin. In this regime, the interpretation of the measured gravitational wave frequencies can be facilitated because the frequency of the dominant mode is directly related to the rotation rate of the star's core.
À la fin de leur vie, les étoiles massives explosent et produisent un phénomène appelé supernova. Tout commence lorsque les réactions de fusion au cœur de l'étoile s'épuisent. Le cœur de l'étoile s'effondre jusqu'à devenir si dense que les forces nucléaires contrebalancent la gravité, créant un rebond. Le cœur interne donne alors naissance à un astre compact, une protoétoile à neutrons (PNS) d'un rayon de ~50 km à sa formation.L'onde de choc générée par ce rebond se propage alors vers les couches extérieures, continuant à s'effondrer. Cependant, l'énergie de ce choc n'est pas immédiatement suffisante pour qu'il atteigne directement la surface de l'étoile. Il devient stationnaire à un rayon de ~ 200 km. L'explosion de l'étoile en supernova dépend de la capacité de ce choc à être relancé pour atteindre la surface de l'étoile. L'interaction entre la matière et les neutrinos joue un rôle essentiel dans cette dynamique. Les neutrinos émis par la PNS peuvent être absorbés par la matière dense se trouvant sous le choc. Le chauffage qui en résulte induit un gonflement du choc. Le développement d'instabilités hydrodynamiques affecte l'efficacité d'absorption des neutrinos sous l'onde de choc stationnaire. Parmi les instabilités, la convection est favorisée par l'établissement d'un gradient négatif d'entropie. Les mouvements convectifs prolongent l'exposition de la matière au flux de neutrinos. D'autre part, l'instabilité du choc d'accrétion stationnaire (SASI) est due à un cycle entre des ondes acoustiques et l'advection des perturbations d'entropie et de vorticité générée par la déformation du choc.Par sa géométrie spirale, elle permet une augmentation locale de la densité et augmente aussi la probabilité d'interaction des neutrinos avec la matière.Dans cette thèse, nous présentons une analyse linéaire (analytique et numérique) de ces deux instabilités, permettant d'établir les domaines de paramètres pour lesquels chacune des instabilités domine la dynamique du flot. Nous étudions ensuite l'impact de la rotation sur ces domaines. Cet effet de la rotation sur les instabilités est encore peu étudié et est une question ouverte dans la communauté. En absence de rotation, l'intensité du chauffage de la matière par les neutrinos, évaluée à travers un paramètre χ de comparaison du temps de flottaison et du temps d'advection, permet la distinction entre le domaine de SASI et le domaine convectif. Nous démontrons les lacunes de ce critère et proposons une autre méthode, plus générale, afin de déterminer le seuil de croissance de la convection. Contrairement aux résultats trouvés par Foglizzo et al. (2006), nous montrons que la transition d'un domaine SASI à un domaine convectif ne se fait pas pour une valeur seuil χ ∼ 3 mais sur un domaine de chauffage tel que χ ∈ [3, 4]. Nous présentons ensuite une analyse de l'influence de la rotation sur la croissance linéaire de ces instabilités. Pour des rotations lentes, le critère d'instabilité fondé sur le paramètre χ diminue. Si la rotation excède 10% de la rotation Képlérienne à la surface de la PNS, alors des modes mixtes SASI/convection/rotation apparaissent à grande échelle. Pour les rotations fortes (>30% de la rotation Képlérienne à la surface de la PNS), l'influence du paramètre χ sur le taux de croissance et sur la fréquence du mode le plus instable devient négligeable. Cette faible dépendance indique que la convection ne joue alors plus de rôle dans l'instabilité dominante qui est d'origine rotationnelle. Dans ce régime, l'interprétation des fréquences mesurées en ondes gravitationnelles peut être facilitée car la fréquence du mode dominant est directement liée au taux de rotation du cœur de l'étoile.
Fichier principal
Vignette du fichier
111385_BUELLET_2023_archivage.pdf (37.35 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04131593 , version 1 (16-06-2023)

Identifiants

  • HAL Id : tel-04131593 , version 1

Citer

Anne-Cécile Buellet. Instabilités hydrodynamiques dans l'effondrement du cœur d'une étoile en rotation avant son explosion en supernova. Phénomènes cosmiques de haute energie [astro-ph.HE]. Université Paris-Saclay, 2023. Français. ⟨NNT : 2023UPASP034⟩. ⟨tel-04131593⟩
86 Consultations
6 Téléchargements

Partager

Gmail Facebook X LinkedIn More