Impact of flow rotation on flame dynamics and hydrodynamic stability - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2019

Impact of flow rotation on flame dynamics and hydrodynamic stability

Influence de la rotation de l'écoulement sur la dynamique des flammes et la stabilité hydrodynamique

Thomas Kaiser
  • Fonction : Auteur
  • PersonId : 1269797
  • IdRef : 224868101

Résumé

This thesis investigates large scale flow rotation in two configurations. In the first, the effect of flow rotation on a laminar flame is investigated. The flame is anchored in the wake of a cylindrical bluff body. The flow rotation is introduced by turning the cylinder along its axis. It is shown by Direct Numerical Simulation (DNS), that the cylinder rotation breaks the symmetry of both flame branches. Flame Transfer Function (FTF) measurements performed by the Wiener-Hopf Inversion suggest, that low rotation rates lead to deep gaps in the gain and the flame becomes almost insensitive to acoustic perturbation at a specific frequency. It furthermore is demonstrated that this decrease in gain of the FTF is due to destructive interference of the heat release signals caused by the two flame branches. The frequency at which the gain becomes almost zero can be adjusted by tuning the cylinder rotation rate. The study suggests that controlling the symmetry of the flame could be a tool of open-loop control of thermoacoustic instabilities.
Cette thèse a pour but l’étude de la rotation de l’écoulement des grandes échelles dans deux configurations. La première configuration se concentre sur l’effet de la rotation de l’écoulement sur une flamme laminaire. Elle est stabilisée dans le sillage d’un cylindre. La rotation de l’écoulement est introduite en faisant tourner le cylindre autour de son axe. La simulation numérique directe (Direct Numerical Simulation (DNS)) montre que la rotation du cylindre rompt la symétrie des deux branches de la flamme. La fonction de transfert de flamme (Flame Transfer Function (FTF)), obtenue grâce à l’inversion de Wiener-Hopf, indique qu’un faible taux de rotation réduit le gain de la FTF et donc la flamme devient presque insensible aux perturbations acoustiques à une fréquence donnée. De plus, il est démontré que cette diminution du gain est due à une interférence destructive des fluctuations de chaleur produites par les deux branches de la flamme. La fréquence à laquelle le gain de la FTF devient presque nul est ajustable par la vitesse de rotation du cylindre. Cette étude suggère que le contrôle de la symétrie de la flamme pourrait être un outil de contrôle en boucle ouverte des instabilités thermoacoustiques. Dans le cas de la deuxième configuration, la rotation de l’écoulement est induite par une instabilité hydrodynamique, aussi nommée Precessing Vortex Core (PVC) dans un système d’injection de carburant industriel. Des expériences et des simulations aux grandes échelles (Large Eddy Simulation (LES)) montrent que l’écoulement non-réactif dans l’injecteur pri- maire peut être décomposé en une contribution moyenne et un PVC. Cette instabilité hydro- dynamique est étudiée par l’analyse de stabilité linéaire (Linear Stability Analysis (LSA)) en utilisant deux approches différentes (locale et BiGlobale). Les résultats de l’expérience, de la LES et de la LSA démontrent que le montage d’une tige centrale à l’intérieur de l’injecteur stabilise le PVC. De plus, le même injecteur industriel est étudié dans le cas d’un écoule- ment réactif par LES. Les résultats démontrent que la flamme stabilise le PVC. L’analyse de stabilité BiGlobal montre que le gradient de densité dans le front moyen de la flamme a un effet important sur l’amortissement du PVC. Enfin, l’impact de la tige centrale est également étudié pour le cas réactif. La tige centrale impacte marginalement la forme globale de la flamme, mais a un effet positif sur l’accrochage de la flamme dans la zone de combustion pauvre. En comparant deux cas par LSA, celui avec la tige et celui sans la tige, les résultats suggèrent que la tige augmente considérablement l’amortissement du PVC. Cela pourrait causer une diminution de la turbulence dans l’écoulement et empêcher l’extinction de la flamme et donc expliquer l’influence bénéfique de la tige sur la stabilisation de la flamme.
Fichier principal
Vignette du fichier
Kaiser_-_Thomas.pdf (13.88 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04160561 , version 1 (12-07-2023)

Identifiants

  • HAL Id : tel-04160561 , version 1

Citer

Thomas Kaiser. Impact of flow rotation on flame dynamics and hydrodynamic stability. Fluid mechanics [physics.class-ph]. Institut National Polytechnique de Toulouse - INPT, 2019. English. ⟨NNT : 2019INPT0011⟩. ⟨tel-04160561⟩
38 Consultations
22 Téléchargements

Partager

Gmail Facebook X LinkedIn More