Leveraging sequentiality in Robot Learning : Application of the Divide & Conquer paradigm to Neuro-Evolution and Deep Reinforcement Learning - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Leveraging sequentiality in Robot Learning : Application of the Divide & Conquer paradigm to Neuro-Evolution and Deep Reinforcement Learning

Exploiter la séquentialité dans l'apprentissage robotique : une application du paradigme de diviser pour régner à la neuroévolution et à l'apprentissage par renforcement profond

Résumé

“To succeed, planning alone is insufficient. One must improvise as well.” This quote from Isaac Asimov, founding father of robotics and author of the Three Laws of Robotics, emphasizes the importance of being able to adapt and think on one’s feet to achieve success. Although robots can nowadays resolve highly complex tasks, they still need to gain those crucial adaptability skills to be deployed on a larger scale. Robot Learning uses learning algorithms to tackle this lack of adaptability and to enable robots to solve complex tasks autonomously. Two types of learning algorithms are particularly suitable for robots to learn controllers autonomously: Deep Reinforcement Learning and Neuro-Evolution. However, both classes of algorithms often cannot solve Hard Exploration Problems, that is problems with a long horizon and a sparse reward signal, unless they are guided in their learning process. One can consider different approaches to tackle those problems. An option is to search for a diversity of behaviors rather than a specific one. The idea is that among this diversity, some behaviors will be able to solve the task. We call these algorithms Diversity Search algorithms. A second option consists in guiding the learning process using demonstrations provided by an expert. This is called Learning from Demonstration. However, searching for diverse behaviors or learning from demonstration can be inefficient in some contexts. Indeed, finding diverse behaviors can be tedious if the environment is complex. On the other hand, learning from demonstration can be very difficult if only one demonstration is available. This thesis attempts to improve the effectiveness of Diversity Search and Learning from Demonstration when applied to Hard Exploration Problems. To do so, we assume that complex robotics behaviors can be decomposed into reaching simpler sub-goals. Based on this sequential bias, we try to improve the sample efficiency of Diversity Search and Learning from Demonstration algorithms by adopting Divide & Conquer strategies, which are well-known for their efficiency when the problem is composable. Throughout the thesis, we propose two main strategies. First, after identifying some limitations of Diversity Search algorithms based on Neuro-Evolution, we propose Novelty Search Skill Chaining. This algorithm combines Diversity Search with Skill- Chaining to efficiently navigate maze environments that are difficult to explore for state-of-the-art Diversity Search. In a second set of contributions, we propose the Divide & Conquer Imitation Learning algorithms. The key intuition behind those methods is to decompose the complex task of learning from a single demonstration into several simpler goal-reaching sub-tasks. DCIL-II, the most advanced variant, can learn walking behaviors for under-actuated humanoid robots with unprecedented efficiency. Beyond underlining the effectiveness of the Divide & Conquer paradigm in Robot Learning, this work also highlights the difficulties that can arise when composing behaviors, even in elementary environments. One will inevitably have to address these difficulties before applying these algorithms directly to real robots. It may be necessary for the success of the next generations of robots, as outlined by Asimov.
"Pour réussir, il ne suffit pas de prévoir, il faut aussi savoir improviser." Cette citation d’Isaac Asimov, père fondateur de la robotique et auteur des Trois lois de la robotique, souligne toute l’importance d’être capable de s’adapter et d’agir dans l’instant présent pour réussir. Même si, aujourd’hui, les robots peuvent résoudre des tâches d’une complexité qui était inimaginable il y a encore quelques années, ces capacités d’adaptation leur font encore défaut, ce qui les empêche d’être déployé à une plus grande échelle. Pour remédier à ce manque d’adaptabilité, les roboticiens utilisent des algorithmes d’apprentissage afin de permettre aux robots de résoudre des tâches complexes de manière autonome. Deux types d’algorithmes d’apprentissage sont particulièrement adaptés à l’apprentissage autonome de contrôleurs par les robots : l’apprentissage profond par renforcement et la neuro-évolution. Cependant, ces deux classes d’algorithmes ne sont capables de résoudre des problèmes d’exploration difficiles, c’est-à- dire des problèmes avec un horizon long et un signal de récompense rare, que s’ils sont guidés dans leur processus d’apprentissage. Différentes approches peuvent être envisagées pour permettre à un robot de résoudre un tel problème sans être guidé. Une première approche consiste à rechercher une diversité de comportements plutôt qu’un comportement spécifique. L’idée étant que parmi cette diversité, certains comportements seront probablement capables de résoudre la tâche qui nous intéresse. Nous les appelons les algorithmes de recherche de diversité. Une deuxième approche consiste à guider le processus d’apprentissage en utilisant des démonstrations fournies par un expert. C’est ce qu’on appelle l’apprentissage par démonstration. Cependant, chercher des comportements divers ou apprendre par démonstration peut être inefficace dans certains contextes. En effet, la recherche de comportements divers peut être fastidieuse si l’environnement est complexe. D’autre part, l’apprentissage à partir d’une seule et unique démonstration peut être très difficile. Dans cette thèse, nous tentons d’améliorer l’efficacité des approches de recherche par diversité et d’apprentissage à partir d’une seule démonstration dans des problèmes d’exploration difficiles. Pour ce faire, nous supposons que les comportements robotiques complexes peuvent être décomposés en sous-comportements plus simples. Sur la base de ce biais séquentiel, nous adoptons une stratégie dite de "diviser-pour-régner", qui est bien connue pour être efficace lorsque le problème est composable. Nous proposons deux approches en particulier. Premièrement, après avoir identifié certaines limites des algorithmes de recherche de diversité basés sur la l’évolution de réseaux de neurones artificiels, nous proposons Novelty Search Skill Chaining. Cet algorithme combine la recherche de diversité avec l’enchaînement de compétences pour naviguer efficacement dans des labyrinthes qui sont difficiles à explorer pour des algorithmes de l’état-de-l’art. Dans une deuxième série de contributions, nous proposons les algorithmes Divide & Conquer Imitation Learning. L’intuition derrière ces méthodes est de décomposer la tâche complexe d’apprentissage à partir d’une seule démonstration en plusieurs sous-tâches plus simples consistant à atteindre des sous-buts successifs. DCIL-II, la variante la plus avancée, est capable d’apprendre des comportements de marche pour des robots humanoïdes sous-actionnés avec une efficacité sans précédent. Au-delà de souligner l’efficacité du paradigme de diviser-pour-régner dans l’apprentissage des robots, cette thèse met également en évidence les difficultés qui peuvent survenir lorsqu’on compose de comportements, même dans des environnements élémentaires. Il faudra inévitablement résoudre ces difficultés avant d’appliquer ces algorithmes directement à des robots réels. C’est peut-être une condition nécessaire pour le succès des prochaines générations [...]
Fichier principal
Vignette du fichier
CHENU_Alexandre_thesev2_2023.pdf (7.55 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04354324 , version 1 (19-12-2023)

Identifiants

  • HAL Id : tel-04354324 , version 1

Citer

Alexandre Chenu. Leveraging sequentiality in Robot Learning : Application of the Divide & Conquer paradigm to Neuro-Evolution and Deep Reinforcement Learning. Artificial Intelligence [cs.AI]. Sorbonne Université, 2023. English. ⟨NNT : 2023SORUS342⟩. ⟨tel-04354324⟩
76 Consultations
39 Téléchargements

Partager

Gmail Facebook X LinkedIn More