Photonic antennas to boost the light and chiral matter interactions - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Photonic antennas to boost the light and chiral matter interactions

Antennes photoniques pour amplifier les interactions entre la lumière et la matière chirale

Lingfei Cui
  • Fonction : Auteur
  • PersonId : 1329357
  • IdRef : 274016176

Résumé

The detection of molecules based on fluorescence or Raman scattering has been widely studied and is currently used in industry and laboratories. However, many organic molecules of interest are chiral, and their chemical and biological properties depend on their enantiomer as well as on the chirality of their secondary structure. The quantity and chirality of biomolecules are classically determined by measuring the differential absorption between the two opposite circular polarizations (chiroptic method). However, this method is limited by the low differential absorption of chiral molecules, which is of the order of 10-3 in the UV part of the spectrum. Plasmonic resonators have the ability to resonantly interact with light and are characterized by a moderate quality factor and a low effective volume. This resonant interaction allows (i) to increase the coupling between molecules and light and (ii) to control the polarization properties of light. So far, the latest advances concern the implementation of nanostructured chiral surfaces with gammadion-type resonators or stacked twisted resonators that interact preferentially with a given helicity of light. However, the mechanism behind the differential response of biomolecules coupled to chiral resonators to circularly polarized light is still unclear, preventing the optimization of such detection. Moreover, in the research published so far, two different chiral sensors are needed to interact with right- and left-handed circularly polarized light, which requires complex calibration procedures. During the course of my PhD, I have studied the use of anisotropic achiral nanostructures to interact with chiral molecules. Indeed, they have the significant advantage over chiral nanostructures of changing the sign of the circular dichroism by controlling the incident polarization or the direction of propagation. Indeed, the symmetries of the electromagnetic field in close proximity to the resonators can be manipulated at will by changing illumination conditions hence providing a unique tool for studying the origin of the electromagnetic coupling between chiral biomolecule and nanoresonators. Consequently, in my PhD project I propose to use plasmonic nanoresonators to increase the light - “chiral matter” interactions in order to detect and study chiral molecules. I will use the concept of achiral plasmonic nanostructures (nanoslits) to develop innovative nanoresonators that will be used, once functionalized, to detect chiral biomolecules with enantiomer sensitivity. Indeed, achiral resonators can generate both signs of chiral fields as opposed to chiral resonators which would make their use very flexible. This work implies characterizing, describing and understanding the origins of chiral fields and how to make them homogeneous. Through the study of nanoslits, I demonstrate numerically and theoretically how to design a nanosource of pure superchiral light, free of any background and for which the sign of the chirality is tunable on-demand in wavelength and polarization. In the perspective, I will present experimental methods that could monitor the CD via fluorescence emission (FDCD for Fluorescence Detected Circular Dichroism) in the case of light harvesting molecules for molecules that need to be excited in the UV, autofluorescence may be used in conjunction with aluminum resonators. Without loss of generality, these considerations lead to the decision of investigating plasmonic resonators with resonance at 680 nm which correspond to the chiral absorption band of LHCII. The idea of blocking the excitation beam to collect only the emission of the chiral molecules leaded to the idea of investigating the resonances of openings in an opaque layer of gold.
La détection de molécules chirales à l'aide de résonateurs plasmoniques est un domaine de recherche prometteur pour améliorer la sensibilité et la flexibilité de la détection. Cette approche vise à surmonter les limitations des méthodes conventionnelles, telles que la méthode chiroptique, qui présente des limitations en termes de sensibilité. Les résonateurs plasmoniques sont capables d'interagir de manière résonante avec la lumière, ce qui permet d'augmenter le couplage entre les molécules chirales et la lumière, tout en offrant un contrôle sur les propriétés de polarisation de la lumière. Les avancées récentes dans ce domaine ont porté sur la création de surfaces nanostructurées chirales avec des résonateurs spécifiques, mais le mécanisme sous-jacent à la réponse différentielle des biomolécules à la lumière polarisée circulairement reste mal compris. Dans le cadre de ce projet de doctorat, l'approche novatrice consiste à utiliser des nanostructures achirales anisotropes, telles que des nanoslits, pour interagir avec des molécules chirales. Ces nanostructures achirales offrent l'avantage de pouvoir inverser le signe du dichroïsme circulaire en contrôlant la polarisation incidente ou le sens de propagation de la lumière. En manipulant les symétries du champ électromagnétique à proximité des résonateurs, il devient possible d'étudier plus en détail le couplage électromagnétique entre les biomolécules chirales et les nanorésonateurs. Le projet vise à développer des nanorésonateurs plasmoniques innovants, basés sur des nanoslits, qui seront fonctionnalisés pour détecter des biomolécules chirales. Contrairement aux résonateurs chiraux, les résonateurs achiraux peuvent générer des signes de champs chiraux, offrant ainsi une grande flexibilité dans la détection. Le travail comprend la caractérisation et la compréhension de l'origine des champs chiraux, ainsi que des méthodes pour les rendre homogènes. Une partie de la recherche se concentre sur la conception d'une source de lumière superchirale pure à l'aide de nanoslits, qui peut être accordée en longueur d'onde et en polarisation. Dans cette perspective, des méthodes expérimentales sont présentées, notamment l'utilisation de la fluorescence détectée par dichroïsme circulaire (FDCD) pour les molécules sensibles aux énantiomères. Pour la réalisation de ces expériences, des résonateurs plasmoniques avec une résonance à 680 nm ont été choisis, correspondant à la bande d'absorption chirale de LHCII. Une idée intéressante consiste à bloquer le faisceau d'excitation pour ne recueillir que l'émission des molécules chirales, en étudiant les résonances des ouvertures dans une couche d'or opaque. En résumé, ce projet de doctorat vise à exploiter les avantages des nanostructures plasmoniques achirales pour améliorer la détection des molécules chirales en offrant une plus grande flexibilité dans la manipulation de la polarisation de la lumière et en explorant de nouvelles méthodes expérimentales pour cette détection.
Fichier principal
Vignette du fichier
CUI_Lingfei_these_2023.pdf (10.41 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04379318 , version 1 (08-01-2024)

Identifiants

  • HAL Id : tel-04379318 , version 1

Citer

Lingfei Cui. Photonic antennas to boost the light and chiral matter interactions. Materials Science [cond-mat.mtrl-sci]. Sorbonne Université, 2023. English. ⟨NNT : 2023SORUS392⟩. ⟨tel-04379318⟩
57 Consultations
32 Téléchargements

Partager

Gmail Facebook X LinkedIn More