Stratégies auto-reconfigurables basées sur la détection pour les systèmes robotiques modulaires autonomes - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2022

Sensing-based self-reconfigurable strategies for autonomous modular robotic systems

Stratégies auto-reconfigurables basées sur la détection pour les systèmes robotiques modulaires autonomes

Résumé

Modular robotic systems (MRSs) have become a highly active research today. It has the ability to change the perspective of robotic systems from machines designed to do certain tasks to multipurpose tools capable of accomplishing almost any task. They are used in a wide range of applications, including reconnaissance, rescue missions, space exploration, military task, etc. Constantly, MRS is built of “modules” from a few to several hundreds or even thousands. Each module involves actuators, sensors, computational, and communicational capabilities. Usually, these systems are homogeneous where all the modules are identical; however, there could be heterogeneous systems that contain different modules to maximize versatility. One of the advantages of these systems is their ability to operate in harsh environments in which contemporary human-in-the-loop working schemes are risky, inefficient and sometimes infeasible. In this thesis, we are interested in self-reconfigurable modular robotics. In such systems, it uses a set of detectors in order to continuously sense its surroundings, locate its own position, and then transform to a specific shape to perform the required tasks. Consequently, MRS faces three major challenges. First, it offers a great amount of collected data that overloads the memory storage of the robot. Second it generates redundant data which complicates the decision making about the next morphology in the controller. Third, the self reconfiguration process necessitates massive communication between the modules to reach the target morphology and takes a significant processing time to self-reconfigure the robotic. Therefore, researchers’ strategies are often targeted to minimize the amount of data collected by the modules without considerable loss in fidelity. The goal of this reduction is first to save the storage space in the MRS, and then to facilitate analyzing data and making decision about what morphology to use next in order to adapt to new circumstances and perform new tasks. In this thesis, we propose an efficient mechanism for data processing and self-reconfigurable decision-making dedicated to modular robotic systems. More specifically, we focus on data storage reduction, self-reconfiguration decision-making, and efficient communication management between modules in MRSs with the main goal of ensuring fast self-reconfiguration process.
Les systèmes robotiques modulaires (MRS) font aujourd’hui l’objet de recherches très actives. Ils ont la capacité de changer la perspective des systèmes robotiques, passant de machines conçues pour effectuer certaines tâches à des outils polyvalents capables d'accomplir presque toutes les tâches. Ils sont utilisés dans un large éventail d'applications, notamment la reconnaissance, les missions de sauvetage, l'exploration spatiale, les tâches militaires, etc. Constamment, MRS est constitué de "modules" allant de quelques à plusieurs centaines, voire milliers. Chaque module implique des actionneurs, des capteurs, des capacités de calcul et de communication. Habituellement, ces systèmes sont homogènes où tous les modules sont identiques ; cependant, il pourrait y avoir des systèmes hétérogènes contenant différents modules pour maximiser la polyvalence. L’un des avantages de ces systèmes est leur capacité à fonctionner dans des environnements difficiles dans lesquels les schémas de travail contemporains avec intervention humaine sont risqués, inefficaces et parfois irréalisables. Dans cette thèse, nous nous intéressons à la robotique modulaire auto-reconfigurable. Dans de tels systèmes, il utilise un ensemble de détecteurs afin de détecter en permanence son environnement, de localiser sa propre position, puis de se transformer en une forme spécifique pour effectuer les tâches requises. Par conséquent, MRS est confronté à trois défis majeurs. Premièrement, il offre une grande quantité de données collectées qui surchargent la mémoire de stockage du robot. Deuxièmement, cela génère des données redondantes qui compliquent la prise de décision concernant la prochaine morphologie du contrôleur. Troisièmement, le processus d'auto-reconfiguration nécessite une communication massive entre les modules pour atteindre la morphologie cible et prend un temps de traitement important pour auto-reconfigurer le robot. Par conséquent, les stratégies des chercheurs visent souvent à minimiser la quantité de données collectées par les modules sans perte considérable de fidélité. Le but de cette réduction est d'abord d'économiser de l'espace de stockage dans le MRS, puis de faciliter l'analyse des données et la prise de décision sur la morphologie à utiliser ensuite afin de s'adapter aux nouvelles circonstances et d'effectuer de nouvelles tâches. Dans cette thèse, nous proposons un mécanisme efficace de traitement de données et de prise de décision auto-reconfigurable dédié aux systèmes robotiques modulaires. Plus spécifiquement, nous nous concentrons sur la réduction du stockage de données, la prise de décision d'auto-reconfiguration et la gestion efficace des communications entre les modules des MRS dans le but principal d'assurer un processus d'auto-reconfiguration rapide.
Fichier principal
Vignette du fichier
2022AliahMajed.pdf (6.49 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04398223 , version 1 (16-01-2024)

Identifiants

  • HAL Id : tel-04398223 , version 1

Citer

Aliah Majed. Stratégies auto-reconfigurables basées sur la détection pour les systèmes robotiques modulaires autonomes. Automatique / Robotique. ENSTA Bretagne - École nationale supérieure de techniques avancées Bretagne, 2022. Français. ⟨NNT : 2022ENTA0013⟩. ⟨tel-04398223⟩
39 Consultations
8 Téléchargements

Partager

Gmail Facebook X LinkedIn More