Offline Contextual Bandit : Theory and Large Scale Applications - TEL - Thèses en ligne
Thèse Année : 2023

Offline Contextual Bandit : Theory and Large Scale Applications

Bandit contextuel hors-ligne : théorie et applications à grande échelle

Otmane Sakhi
  • Fonction : Auteur
  • PersonId : 1341938
  • IdRef : 275159035

Résumé

This thesis presents contributions to the problem of learning from logged interactions using the offline contextual bandit framework. We are interested in two related topics: (1) offline policy learning with performance certificates, and (2) fast and efficient policy learning applied to large scale, real world recommendation. For (1), we first leverage results from the distributionally robust optimisation framework to construct asymptotic, variance-sensitive bounds to evaluate policies' performances. These bounds lead to new, more practical learning objectives thanks to their composite nature and straightforward calibration. We then analyse the problem from the PAC-Bayesian perspective, and provide tighter, non-asymptotic bounds on the performance of policies. Our results motivate new strategies, that offer performance certificates before deploying the policies online. The newly derived strategies rely on composite learning objectives that do not require additional tuning. For (2), we first propose a hierarchical Bayesian model, that combines different signals, to efficiently estimate the quality of recommendation. We provide proper computational tools to scale the inference to real world problems, and demonstrate empirically the benefits of the approach in multiple scenarios. We then address the question of accelerating common policy optimisation approaches, particularly focusing on recommendation problems with catalogues of millions of items. We derive optimisation routines, based on new gradient approximations, computed in logarithmic time with respect to the catalogue size. Our approach improves on common, linear time gradient computations, yielding fast optimisation with no loss on the quality of the learned policies.
Cette thèse s'intéresse au problème de l'apprentissage à partir d'interactions en utilisant le cadre du bandit contextuel hors ligne. En particulier, nous nous intéressons à deux sujets connexes : (1) l'apprentissage de politiques hors ligne avec des certificats de performance, et (2) l'apprentissage rapide et efficace de politiques, pour le problème de recommandation à grande échelle. Pour (1), nous tirons d'abord parti des résultats du cadre d'optimisation distributionnellement robuste pour construire des bornes asymptotiques, sensibles à la variance, qui permettent l'évaluation des performances des politiques. Ces bornes nous aident à obtenir de nouveaux objectifs d'apprentissage plus pratiques grâce à leur nature composite et à leur calibrage simple. Nous analysons ensuite le problème d'un point de vue PAC-Bayésien et fournissons des bornes, plus étroites, sur les performances des politiques. Nos résultats motivent de nouvelles stratégies, qui offrent des certificats de performance sur nos politiques avant de les déployer en ligne. Les stratégies nouvellement dérivées s'appuient sur des objectifs d'apprentissage composites qui ne nécessitent pas de réglage supplémentaire. Pour (2), nous proposons d'abord un modèle bayésien hiérarchique, qui combine différents signaux, pour estimer efficacement la qualité de la recommandation. Nous fournissons les outils computationnels appropriés pour adapter l'inférence aux problèmes à grande échelle et démontrons empiriquement les avantages de l'approche dans plusieurs scénarios. Nous abordons ensuite la question de l'accélération des approches communes d'optimisation des politiques, en nous concentrant particulièrement sur les problèmes de recommandation avec des catalogues de millions de produits. Nous dérivons des méthodes d'optimisation, basées sur de nouvelles approximations du gradient calculées en temps logarithmique par rapport à la taille du catalogue. Notre approche améliore le temps linéaire des méthodes courantes de calcul de gradient, et permet un apprentissage rapide sans nuire à la qualité des politiques obtenues.
Fichier principal
Vignette du fichier
128787_SAKHI_2023_archivage.pdf (5.07 Mo) Télécharger le fichier
Origine Version validée par le jury (STAR)

Dates et versions

tel-04417936 , version 1 (25-01-2024)

Identifiants

  • HAL Id : tel-04417936 , version 1

Citer

Otmane Sakhi. Offline Contextual Bandit : Theory and Large Scale Applications. Statistics [math.ST]. Institut Polytechnique de Paris, 2023. English. ⟨NNT : 2023IPPAG011⟩. ⟨tel-04417936⟩
235 Consultations
191 Téléchargements

Partager

More