Barycentric embeddings for geometric manifold learning - TEL - Thèses en ligne
Thèse Année : 2023

Barycentric embeddings for geometric manifold learning

Plongements barycentriques pour l'apprentissage géométrique de variétés

Résumé

An MRI image has over 60,000 pixels. The largest known human protein consists of around 30,000 amino acids. We call such data high-dimensional. In practice, most high-dimensional data is high-dimensional only artificially. For example, of all the images that could be randomly generated by coloring 256 x 256 pixels, only a very small subset would resemble an MRI image of a human brain. This is known as the intrinsic dimension of such data. Therefore, learning high-dimensional data is often synonymous with dimensionality reduction. There are numerous methods for reducing the dimension of a dataset, the most recent of which can be classified according to two approaches. A first approach known as manifold learning or non-linear dimensionality reduction is based on the observation that some of the physical laws behind the data we observe are non-linear. In this case, trying to explain the intrinsic dimension of a dataset with a linear model is sometimes unrealistic. Instead, manifold learning methods assume a locally linear model. Moreover, with the emergence of statistical shape analysis, there has been a growing awareness that many types of data are naturally invariant to certain symmetries (rotations, reparametrizations, permutations...). Such properties are directly mirrored in the intrinsic dimension of such data. These invariances cannot be faithfully transcribed by Euclidean geometry. There is therefore a growing interest in modeling such data using finer structures such as Riemannian manifolds. A second recent approach to dimension reduction consists then in generalizing existing methods to non-Euclidean data. This is known as geometric learning. In order to combine both geometric learning and manifold learning, we investigated the method called locally linear embedding, which has the specificity of being based on the notion of barycenter, a notion a priori defined in Euclidean spaces but which generalizes to Riemannian manifolds. In fact, the method called barycentric subspace analysis, which is one of those generalizing principal component analysis to Riemannian manifolds, is based on this notion as well. Here we rephrase both methods under the new notion of barycentric embeddings. Essentially, barycentric embeddings inherit the structure of most linear and non-linear dimension reduction methods, but rely on a (locally) barycentric -- affine -- model rather than a linear one. The core of our work lies in the analysis of these methods, both on a theoretical and practical level. In particular, we address the application of barycentric embeddings to two important examples in geometric learning: shapes and graphs. In addition to practical implementation issues, each of these examples raises its own theoretical questions, mostly related to the geometry of quotient spaces. In particular, we highlight that compared to standard dimension reduction methods in graph analysis, barycentric embeddings stand out for their better interpretability. In parallel with these examples, we characterize the geometry of locally barycentric embeddings, which generalize the projection computed by locally linear embedding. Finally, algorithms for geometric manifold learning, novel in their approach, complete this work.
Une image obtenue par IRM, c'est plus de 60 000 pixels. La plus grosse protéine connue chez l'être humain est constituée d'environ 30 000 acides aminés. On parle de données en grande dimension. En réalité, la plupart des données en grande dimension ne le sont qu'en apparence. Par exemple, de toutes les images que l'on pourrait générer aléatoirement en coloriant 256 x 256 pixels, seule une infime proportion ressemblerait à l'image IRM d'un cerveau humain. C'est ce qu'on appelle la dimension intrinsèque des données. En grande dimension, apprentissage rime donc souvent avec réduction de dimension. Il existe de nombreuses méthodes de réduction de dimension, les plus récentes pouvant être classées selon deux approches. Une première approche, connue sous le nom d'apprentissage de variétés (manifold learning) ou réduction de dimension non linéaire, part du constat que certaines lois physiques derrière les données que l'on observe ne sont pas linéaires. Ainsi, espérer expliquer la dimension intrinsèque des données par un modèle linéaire est donc parfois irréaliste. Au lieu de cela, les méthodes qui relèvent du manifold learning supposent un modèle localement linéaire. D'autre part, avec l'émergence du domaine de l'analyse statistique de formes, il y eu une prise de conscience que de nombreuses données sont naturellement invariantes à certaines symétries (rotations, permutations, reparamétrisations...), invariances qui se reflètent directement sur la dimension intrinsèque des données. Ces invariances, la géométrie euclidienne ne peut pas les retranscrire fidèlement. Ainsi, on observe un intérêt croissant pour la modélisation des données par des structures plus fines telles que les variétés riemanniennes. Une deuxième approche en réduction de dimension consiste donc à généraliser les méthodes existantes à des données à valeurs dans des espaces non-euclidiens. On parle alors d'apprentissage géométrique. Jusqu'à présent, la plupart des travaux en apprentissage géométrique se sont focalisés sur l'analyse en composantes principales. Dans la perspective de proposer une approche qui combine à la fois apprentissage géométrique et manifold learning, nous nous sommes intéressés à la méthode appelée locally linear embedding, qui a la particularité de reposer sur la notion de barycentre, notion a priori définie dans les espaces euclidiens mais qui se généralise aux variétés riemanniennes. C'est d'ailleurs sur cette même notion que repose une autre méthode appelée barycentric subspace analysis, et qui fait justement partie des méthodes qui généralisent l’analyse en composantes principales aux variétés riemanniennes. Ici, nous introduisons la notion nouvelle de plongement barycentrique, qui regroupe les deux méthodes. Essentiellement, cette notion englobe un ensemble de méthodes dont la structure rappelle celle des méthodes de réduction de dimension linéaires et non linéaires, mais où le modèle (localement) linéaire est remplacé par un modèle barycentrique -- affine. Le cœur de notre travail consiste en l'analyse de ces méthodes, tant sur le plan théorique que pratique. Du côté des applications, nous nous intéressons à deux exemples importants en apprentissage géométrique : les formes et les graphes. En particulier, on démontre que par rapport aux methodes standard de réduction de dimension en analyse statistique des graphes, les plongements barycentriques se distinguent par leur meilleure interprétabilité. En plus des questions pratiques liées à l'implémentation, chacun de ces exemples soulève ses propres questions théoriques, principalement autour de la géométrie des espaces quotients. Parallèlement, nous nous attachons à caractériser géométriquement les plongements localement barycentriques, qui généralisent la projection calculée par locally linear embedding. Enfin, de nouveaux algorithmes d'apprentissage géométrique, novateurs dans leur approche, complètent ce travail.
Fichier principal
Vignette du fichier
thesis_elodie_maignant.pdf (4.78 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

tel-04452790 , version 1 (08-02-2024)
tel-04452790 , version 2 (12-02-2024)

Licence

Identifiants

  • HAL Id : tel-04452790 , version 1

Citer

Elodie Maignant. Barycentric embeddings for geometric manifold learning. Differential Geometry [math.DG]. Université Côte d'Azur, 2023. English. ⟨NNT : ⟩. ⟨tel-04452790v1⟩
227 Consultations
233 Téléchargements

Partager

More