Low-dimensional controllability of complex networks and applications to the human brain - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Low-dimensional controllability of complex networks and applications to the human brain

Contrôlabilité en basse dimension des réseaux complexes et applications au cerveau humain

Résumé

Controllability and optimal control are specific fields of mathematics that have been developed since the industrial revolution in order to command engineered systems. Nowadays, many systems are interconnected and form networks like the world wide web, transportation networks, or power grids. The biological world is also full of networks: vascular networks, gene regulation, and brain connectivity networks. Gaining control over these large and complex interconnected systems is challenging. During the last decade, there has been an explosion of studies applying controllability theory to networks. Some breakthroughs were made in characterizing the minimum number of controlled nodes and their placement. However, practically controlling networks and steering them toward specific configurations remains challenging mainly when a small fraction of nodes are controlled which is a common constraint, especially for biological networks. This dissertation aims to explore the limit where only one single driver is allowed as it would certainly be the case for brain stimulation perspectives. We observed in practice that one driver node can only control five target nodes. This practical limit was previously observed and documented so we developed a way to aggregate the states of large networks onto a few representative components. For that, we decided to take advantage of the Laplacian eigenmaps method that was already successfully applied in graph embedding and dimensionality reduction techniques. By controlling a few output components, we drastically reduce the number of terminal constraints and ensure that the problem is well-conditioned. We called our method low-dimensional network control. We tested and validated it with synthetic networks. We found that it can be adapted to build a controllability metric that is well-scaled and which does not suffer from numerical issues that arise in high dimension. We applied our method to a large cohort (N > 6k) of healthy participants deriving a detailed map of single-driver controllability for 9 large-scale networks that support human cognition.
La théorie de la contrôlabilité et du contrôle optimal sont des branches des mathématiques qui ont été développées durant la révolution industrielle pour commander des systèmes d'ingénierie. De nos jours, beaucoup de systèmes sont interconnectés tel qu'Internet, les réseaux de transport ou bien les réseaux électriques. Le monde biologique regorge aussi de réseaux : réseaux vasculaires, réseaux d'interaction de gènes ou même les réseaux de connectivité cérébrale. Contrôler ces systèmes complexes interconnectés est un challenge actuel. La dernière décennie a vu une explosion des études qui appliquent la théorie du contrôle à des réseaux. Des avancées importantes ont permis de comprendre comment sélectionner les nœuds qui peuvent en théorie piloter les réseaux entiers. Par contre, en pratique il est difficile de contrôler le réseau lorsque le nombre de nœuds pilotes est réduit. Cette contrainte est malheureusement commune notamment pour le contrôle des réseaux biologiques. Ce manuscrit explore la limite du contrôle par un seul nœud pilote car c'est la situation la plus vraisemblable dans la perspective de la stimulation cérébrale. Nous avons d'abord observé qu'en pratique un seul nœud pouvait contrôler précisément seulement 5 nœuds. Cette limite avait déjà été observée et nous avons voulu la dépasser. Nous avons alors décidé d'agréger les états des nœuds du réseau en quelques composantes qui seraient représentatives. Nous avons utilisé pour cela la méthode de projection sur les vecteurs propres du Laplacien du réseau. Cette méthode est incontournable dans le domaine de la réduction des réseaux et est aussi utilisée en réduction de dimensionnalité. En ne contrôlant que quelques composantes nous réduisons ainsi drastiquement le nombre de contraintes finales et le problème a un meilleur conditionnement. Nous avons appelé notre méthode : le contrôle en basse dimension des réseaux complexes. Nous avons testé et validé notre approche sur des réseaux simulés. Puis nous l'utilisons pour construire une métrique de contrôlabilité qui n'est pas impactée par les problèmes numériques qui surviennent en haute dimension. Nous avons appliqué la métrique à une grande collection de réseau structurel de cerveaux de plus de 6000 sujets sains. Ceci nous a permis de cartographier la contrôlabilité des 9 réseaux majeurs qui sous-tendent la cognition humaine.
Fichier principal
Vignette du fichier
BEN_MESSAOUD_Remy_these_2023.pdf (23.85 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04470751 , version 1 (21-02-2024)

Identifiants

  • HAL Id : tel-04470751 , version 1

Citer

Rémy Ben Messaoud. Low-dimensional controllability of complex networks and applications to the human brain. Neuroscience. Sorbonne Université, 2023. English. ⟨NNT : 2023SORUS537⟩. ⟨tel-04470751⟩
37 Consultations
5 Téléchargements

Partager

Gmail Facebook X LinkedIn More