Approximation de Dynamic Time Warping par réseaux de neurones pour la compression de signaux EEG et l'analyse de l'insomnie induite par le COVID long. - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Neural Network-Based Approximation of Dynamic Time Warping for EEG Signal Compression and Analysis of COVID Long-Induced Insomnia

Approximation de Dynamic Time Warping par réseaux de neurones pour la compression de signaux EEG et l'analyse de l'insomnie induite par le COVID long.

Résumé

This manuscript presents the work carried out within the framework of the CIFRE thesis conducted in partnership between LITIS and Saagie and which is part of the PANDORE-IA project in association with the VIFASOM sleep center.Electroencephalographic (EEG) signals are very useful in helping experts identify various abnormalities like sleep disorders. Recently, the community has shown great interest in long COVID and its various impacts on sleep. However, these signals are voluminous: compression allows reducing storage and transfer costs. Recent compression approaches are based on autoencoders that use a cost function to learn. It is usually the Mean Squared Error (MSE), but there are metrics more suited to time series, particularly Dynamic Time Warping (DTW). However, DTW is not differentiable and thus can not be used as a loss for end-to-end learning.To solve this problem, we propose in this thesis two approaches to approximate DTW based on neural networks. The first approach uses a Siamese network to project the signals so that the Euclidean distance of the projected signals is as close as possible to the DTW of the original signals. The second approach attempts to predict directly the DTW value. We show that these approaches are faster than other differentiable approximations of DTW while obtaining results similar to DTW in query or classification on sleep data.We then demonstrate that the Siamese approximation can be used as a cost function for learning a sleep signal compression system based on an autoencoder. We justify the choice of the network architecture by the fact that it allows us to vary the compression rate. We evaluate this compression system by classification on the compressed and then reconstructed signals, and show that the usual measures of compression quality do not allow for a proper assessment of a compression system's ability to retain discriminative information. We show that our DTW approximations yield better performance on the reconstructed data than conventional compression algorithms and other reconstruction losses.Finally, to study the impact of long COVID on insomnia, we collect and provide the community with a dataset named COVISLEEP, containing polysomnographies of individuals who developed chronic insomnia after COVID infection, and of those suffering from chronic insomnia but who have not been infected by the virus. We compare various state-of-the-art approaches for sleep staging, and use the best one for learning the detection of long COVID. We highlight the difficulty of the task, especially due to the high variability among patients. This offers a complex dataset to the community that allows for the development of more effective methods.
Ce manuscrit présente les travaux effectués dans le cadre d'une thèse CIFRE réalisée en collaboration entre le LITIS et Saagie, et qui s'inscrit dans le projet PANDORE-IA en partenariat avec le centre du sommeil VIFASOM.Les signaux électroencéphalographiques (EEG) sont très utiles pour aider les experts à identifier diverses anomalies comme les troubles du sommeil. En particulier dernièrement, la communauté s'est beaucoup intéressée au COVID long et à ses divers impacts sur le sommeil. Ces signaux sont cependant volumineux : la compression permet de réduire les coûts de stockage et de transfert. Les approches récentes de compression se basent sur des autoencodeurs qui utilisent une fonction de coût pour apprendre. Celle-ci est usuellement la MSE, mais il existe des métriques plus adaptées aux séries temporelles, en particulier DTW. DTW n'est toutefois pas différentiable et ne peut donc être utilisée pour un apprentissage de bout-en-bout.Pour résoudre ce problème, nous proposons dans cette thèse deux approches d'approximation de DTW basées sur des réseaux de neurones. La première approche utilise un réseau siamois pour projeter les signaux de sorte que la distance euclidienne des signaux projetés soit la plus proche possible de la DTW des signaux originaux. La deuxième approche tente de directement prédire la valeur de DTW. Nous montrons que ces approches sont plus rapides que les autres approximations différentiables de DTW tout en obtenant des résultats similaires à l'utilisation de DTW dans des tâches de requêtage ou de classification de signaux du sommeil.Nous montrons ensuite que l'approximation siamoise peut être utilisée comme fonction de coût pour apprendre un système de compression des signaux de sommeil basé sur un autoencodeur. Nous justifions du choix de l'architecture du réseau par le fait qu'elle nous permet de faire varier le taux de compression. Nous évaluons ce système de compression par la classification sur les signaux compressés puis reconstruits, et montrons que les mesures usuelles de qualité de compression ne permettent pas de correctement évaluer la capacité d'un système de compression à conserver l'information discriminante. Nous montrons que nos approximations de DTW permettent d'obtenir de meilleures performances sur les données reconstruites que des algorithmes de compression usuels et que d'autres fonctions de coût de reconstruction.Enfin, pour étudier l'impact du COVID long sur l'insomnie, nous collectons et mettons à disposition de la communauté un jeu de données nommé COVISLEEP, constitué de polysomnographies de personnes ayant développé une insomnie chronique après infection du COVID, et de personnes souffrant d'insomnie chronique mais n'ayant pas été infectées par le virus. Nous comparons diverses approches à l'état de l'art pour classifier les états du sommeil, et utilisons la meilleure pour apprendre la détection de COVID long. Nous montrons la difficulté de la tâche, notamment due à la forte variabilité entre les patients. Ceci offre à la communauté un jeu complexe qui laisse place au développement de méthodes plus performantes.
Fichier principal
Vignette du fichier
hugolerogeron.pdf (6.88 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04473674 , version 1 (22-02-2024)

Identifiants

  • HAL Id : tel-04473674 , version 1

Citer

Hugo Lerogeron. Approximation de Dynamic Time Warping par réseaux de neurones pour la compression de signaux EEG et l'analyse de l'insomnie induite par le COVID long.. Réseau de neurones [cs.NE]. Normandie Université, 2023. Français. ⟨NNT : 2023NORMR098⟩. ⟨tel-04473674⟩
36 Consultations
18 Téléchargements

Partager

Gmail Facebook X LinkedIn More