Exploration des modèles d’apprentissage statistique profonds couplés à la spectrométrie de masse pour améliorer la surveillance épidémiologique des maladies infectieuses - TEL - Thèses en ligne Accéder directement au contenu
Thèse Année : 2023

Exploring deep statistical learning models coupled with mass spectrometry to improve epidemiological monitoring of infectious diseases

Exploration des modèles d’apprentissage statistique profonds couplés à la spectrométrie de masse pour améliorer la surveillance épidémiologique des maladies infectieuses

Résumé

MALDI-TOF (matrix assisted laser desorption and ionisation time of flight) mass spectrometry is a rapid and robust diagnostic method for microbiology, enabling microorganism species to be identified on the basis of their protein fingerprint in the mass spectrum. However, the clinical and epidemiological applications of this technology remain limited by the bioinformatics tools available. This thesis focuses on the application of deep statistical learning models to MALDI-TOF mass spectrometry data for the purpose of epidemiological surveillance of infectious diseases. This includes the monitoring of fungal and mycobacterial epidemics in hospitals, as well as the characterisation of Anopheles vectors of malaria.We examined the impact of sample preparation methods and computer analysis of mass spectra on improving learning, in order to identify epidemic fungal clones in hospitals and prevent their spread. Our study showed that the convolution neural network (CNN) has a high potential for identifying the spectra of specific Candida parapsilosis clones, achieving 94% accuracy by optimising essential parameters (culture media, growth time, and the spectra acquisition machine). To detect epidemic Aspergillus flavus clones in multicentre hospital cohorts, the CNN was also able to classify most isolates correctly, achieving accuracy of over 93% for two of the three instruments used. We have also shown that by using optimised deep learning models, such as a CNN and a temporal convolution neural network (TCN), we can predict the age of mosquitoes with an average accuracy of two days (best mean absolute error: 1.74 days). This approach will enable us to effectively monitor the age structure of wild Anopheles mosquito populations and target them more effectively with control measures. Finally, we demonstrated the performance of various neural network architectures and mass spectra representation methods, using different cohorts covering various epidemiological issues such as age prediction, identification of closely related species of Anopheles mosquitoes, distinction between closely related subspecies, and detection of resistance in Mycobacterium abscessus. The study showed that of the different models evaluated, the best performing models, such as TCNs and a recurrent neural network, were able to achieve notable results, reaching an identification accuracy of 93% for closely related Anopheles species and 95% for Mycobacterium abscessus subspecies. In addition, the use of CNN and TCN enabled the detection of resistant strains in Mycobacterium abscessus with an accuracy of over 97%. This thesis highlights the use of deep learning in conjunction with MALDI-TOF, a hitherto little explored approach. With the widespread availability of MALDI-TOF instruments and the possibility of coupling analyses to online applications using deep learning, this approach looks promising, opening the way to other epidemiological applications beyond simple species identification, such as detecting epidemiological clusters of drug-resistant microorganisms, monitoring the transmission of bacterial and fungal diseases, and evaluating the effectiveness of targeted vector control interventions.
La spectrométrie de masse de type MALDI-TOF (matrix assisted laser desorption and ionisation time of flight) est une méthode de diagnostic en microbiologie rapide et robuste, permettant d'identifier les espèces de micro-organismes grâce à leur empreinte protéique constituée par le spectre de masse. Cependant, les applications clinico-épidémiologiques de cette technologie demeurent limitées par les outils bio-informatiques à disposition. Cette thèse se focalise sur l'application de modèles d'apprentissage statistique profonds aux données de spectrométrie de masse de type MALDI-TOF dans un but de surveillance épidémiologique des maladies infectieuses. Elle inclut la surveillance des épidémies de champignons et de mycobactéries en milieu hospitalier, ainsi que la caractérisation des anophèles vecteurs du paludisme. Nous avons examiné l'impact des méthodes de préparation des échantillons et de l'analyse informatique des spectres de masse sur l'amélioration de l'apprentissage, afin d’identifier les clones fongiques épidémiques en milieu hospitalier et prévenir leur propagation. Notre étude a montré que le réseau de neurones à convolution (CNN) a un potentiel élevé pour identifier les spectres de clones spécifiques de Candida parapsilosis, atteignant une précision de 94 % en optimisant des paramètres essentiels (milieux de culture, temps de croissance, et la machine d'acquisition des spectres). Pour détecter des clones épidémiques Aspergillus flavus dans des cohortes hospitalières multicentriques, le CNN a également réussi à classer correctement la plupart des isolats, atteignant une précision supérieure à 93 % pour deux des trois appareils utilisés. Nous avons aussi montré qu’en utilisant des modèles d'apprentissage profond optimisés, tels qu'un CNN et un réseau de neurones à convolution temporelle (TCN), nous pouvons prédire l'âge des moustiques avec une précision moyenne de deux jours (meilleure erreur absolue moyenne : 1,74 jours). Cette approche permettrait ainsi de surveiller efficacement la structure de l'âge des populations de moustiques anophèles sauvages et de mieux les cibler par des mesures de contrôle. Enfin, nous avons démontré les performances de diverses architectures de réseaux de neurones et de différentes méthodes de représentation des spectres de masse, en utilisant différentes cohortes couvrant diverses problématiques épidémiologiques telles que la prédiction de l'âge, l'identification d'espèces étroitement apparentées des moustiques anophèles, la distinction entre sous-espèces proches, ainsi que la détection de la résistance chez le Mycobacterium abscessus. L'étude a montré que parmi les différents modèles évalués, les modèles les plus performants, tels que les TCN et un réseau de neurones récurrents, pouvaient obtenir des résultats notables, atteignant une précision d'identification de 93 % pour les espèces d'Anophèles étroitement liées et de 95 % pour les sous-espèces de Mycobacterium abscessus. De plus, l'utilisation de CNN et de TCN a permis de détecter les souches résistantes chez Mycobacterium abscessus avec une précision dépassant 97 %. Cette thèse met en lumière l'utilisation de l'apprentissage profond en conjonction avec le MALDI-TOF, une approche jusqu'ici peu explorée. Avec la généralisation des instruments MALDI-TOF et la possibilité de coupler les analyses à des applications en ligne utilisant l'apprentissage profond, cette approche semble prometteuse, ouvrant la voie à d'autres applications épidémiologiques au-delà de la simple identification d’espèce, telles que la détection de clusters épidémiologiques de microorganismes résistants aux médicaments, la surveillance de la transmission des maladies bactériennes et fongiques, et l’évaluation de l'efficacité des interventions ciblées de lutte antivectorielle.
Fichier principal
Vignette du fichier
144040_MOHAMMAD_2023_archivage.pdf (13.52 Mo) Télécharger le fichier
Origine : Version validée par le jury (STAR)

Dates et versions

tel-04496394 , version 1 (08-03-2024)

Identifiants

  • HAL Id : tel-04496394 , version 1

Citer

Noshine Mohammad. Exploration des modèles d’apprentissage statistique profonds couplés à la spectrométrie de masse pour améliorer la surveillance épidémiologique des maladies infectieuses. Santé publique et épidémiologie. Sorbonne Université, 2023. Français. ⟨NNT : 2023SORUS617⟩. ⟨tel-04496394⟩
53 Consultations
5 Téléchargements

Partager

Gmail Facebook X LinkedIn More